Background And Purpose: To diversify and expand possible tuberculosis (TB) drug candidates and maximize limited global resources, we investigated the effect of colchicine, an FDA-approved anti-gout drug, against Mycobacterium tuberculosis (Mtb) infection because of its immune-modulating effects.
Experimental Approach: We evaluated the intracellular anti-Mtb activity of different concentrations of colchicine in murine bone marrow-derived macrophages (BMDMs). To elucidate the underlying mechanism, RNA sequencing, biological and chemical inhibition assays, and Western blot, quantitative real-time PCR, enzyme-linked immunosorbent assay (ELISA), and immunohistochemical analyses were employed. Finally, type I interferon-dependent highly TB-susceptible A/J mice were challenged with virulent Mtb H37Rv, and the host-directed therapeutic effect of oral colchicine administration on bacterial burdens and lung inflammation was assessed 30 days post-infection (2.5 mg·kg every 2 days).
Key Results: Colchicine reinforced the anti-Mtb activity of BMDMs without affecting cell viability, indicating that colchicine facilitated macrophage immune activation upon Mtb infection. The results from RNA sequencing, NLRP3 knockout BMDM, IL-1 receptor blockade, and immunohistochemistry analyses revealed that this unexpected intracellular anti-Mtb activity of colchicine was mediated through NLRP3-dependent IL-1β signalling and Cox-2-regulated PGE production in macrophages. Consequently, the TB-susceptible A/J mouse model showed remarkable protection, with decreased bacterial loads in both the lungs and spleens of oral colchicine-treated mice, with significantly elevated Cox-2 expression at infection sites.
Conclusions And Implications: The repurposing of colchicine against Mtb infection in this study highlights its unique function in macrophages upon Mtb infection and its novel potential use in treating TB as host-directed or adjunctive therapy.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1111/bph.15838 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!