Gene expression levels of synaptic exocytosis regulator synaptophysin in the brain and the olfactory organ of anadromous salmon.

Fish Physiol Biochem

Laboratory of Humans and the Ocean, Faculty of Fisheries Sciences, Hokkaido University, 3-1-1, Minato-cho, Hakodate, Hokkaido, 041-8611, Japan.

Published: April 2022

Anadromous Pacific salmon (genus Oncorhynchus) are known for their homing behavior based on olfactory imprinting, which is formed during their seaward migration. Soluble N-ethylmaleimide-sensitive factor attachment protein receptor (SNARE/Snare) complex is a minimum unit of vesicle exocytosis from the pre-synaptic membrane. Its component genes (synaptosome-associated protein 25, syntaxin 1, and vesicle-associated membrane protein 2) are more strongly expressed in the olfactory nervous system (olfactory epithelium, olfactory bulb, and telencephalon) at the migration stages related to olfactory imprinting and/or retrieval in salmon. This study focused on the mRNA synthesis of synaptophysin (Syp), one of the Snare regulatory factors. syp is strongly expressed in chum salmon (Oncorhynchus keta) olfactory nervous system during the seaward migration and temporarily increased during the homeward migration. In reference to our previous studies, these expression changes were similar to the snare genes in the chum salmon. Therefore, syp and Snare component genes were synchronously expressed reflecting the development and short-term plasticity of the olfactory nervous system that is essential for olfactory imprinting.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s10695-022-01063-7DOI Listing

Publication Analysis

Top Keywords

olfactory imprinting
12
olfactory nervous
12
nervous system
12
olfactory
9
seaward migration
8
component genes
8
syp snare
8
chum salmon
8
salmon
5
gene expression
4

Similar Publications

The cow-calf bonding is a process that must be developed within the first six hours after calving. Both the buffalo dam and the newborn calf receive a series of sensory cues during calving, including olfactory, tactile, auditory, and visual stimuli. These inputs are processed in the brain to develop an exclusive bond where the dam provides selective care to the filial newborn.

View Article and Find Full Text PDF

Odor exposure during imprinting periods increases odorant-specific sensitivity and receptor gene expression in coho salmon (Oncorhynchus kisutch).

J Exp Biol

October 2024

Environmental and Fisheries Sciences Division, Northwest Fisheries Science Center, National Marine Fisheries Service, National Oceanic and Atmospheric Administration, 2725 Montlake Blvd East, Seattle, WA 98112, USA.

Pacific salmon are well known for their homing migrations; juvenile salmon learn odors associated with their natal streams prior to seaward migration, and then use these retained odor memories to guide them back from oceanic feeding grounds to their river of origin to spawn several years later. This memory formation, termed olfactory imprinting, involves (at least in part) sensitization of the peripheral olfactory epithelium to specific odorants. We hypothesized that this change in peripheral sensitivity is due to exposure-dependent increases in the expression of odorant receptor (OR) proteins that are activated by specific odorants experienced during imprinting.

View Article and Find Full Text PDF

Behavioral plasticity.

Genetics

September 2024

Neurobiology Division, MRC Laboratory of Molecular Biology, Cambridge, Cambridgeshire CB2 0QH, UK.

Behavioral plasticity allows animals to modulate their behavior based on experience and environmental conditions. Caenorhabditis elegans exhibits experience-dependent changes in its behavioral responses to various modalities of sensory cues, including odorants, salts, temperature, and mechanical stimulations. Most of these forms of behavioral plasticity, such as adaptation, habituation, associative learning, and imprinting, are shared with other animals.

View Article and Find Full Text PDF

Anadromous Pacific salmon (genus Oncorhynchus) are known for homing behavior to their natal rivers based on olfactory imprinted memories during seaward migration. The SNARE complex is a regulator of vesicle exocytosis from the presynaptic membrane. Our previous study suggested that its component genes (Snap25, Stx1, and Vamp2) are more highly expressed in the olfactory nervous system (ONS) during the migration stages associated with olfactory imprinting in the evolutionary species of Pacific salmon, such as chum (O.

View Article and Find Full Text PDF

Circuit formation and sensory perception in the mouse olfactory system.

Front Neural Circuits

March 2024

Department of Brain Function, School of Medical Sciences, University of Fukui, Matsuoka, Japan.

In the mouse olfactory system, odor information is converted to a topographic map of activated glomeruli in the olfactory bulb (OB). Although the arrangement of glomeruli is genetically determined, the glomerular structure is plastic and can be modified by environmental stimuli. If the pups are exposed to a particular odorant, responding glomeruli become larger recruiting the dendrites of connecting projection neurons and interneurons.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!