Seismic wave simulation using a 3D printed model of the Los Angeles Basin.

Sci Rep

Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, CA, 91125, USA.

Published: March 2022

Studying seismic wave propagation through complex media is crucial to numerous aspects of geophysics and engineering including seismic hazard assessment. In particular, small-scale structure such as sedimentary basins and their edges can have significant effects on high-frequency earthquake ground motion, which is the main cause for the damage to buildings and infrastructure. However, such structural effects are poorly understood due to limitations in numerical and analytical methods. To overcome this challenge, for the first time, we utilize the 3D printing technique to build a scaled-down physical representation of geological structure and perform lab-scale seismic experiments on it. Specifically, a physical model based on the Los Angeles Basin is printed and used as synthetic medium to propagate ultrasonic waves, to mimic seismic wave propagation from local earthquakes. Our results show clear body and surface waves recorded at expected time and locations, as well as waves that are scattered from the basin edges. We find that high-frequency energies are significantly reduced at the basin, which is at odds with the conventional view of basins as ground motion amplifiers. This novel waveform modeling approach with 3D printed Earth models is largely automated and provides an effective means to tackle geophysical problems of significance.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8931089PMC
http://dx.doi.org/10.1038/s41598-022-08732-wDOI Listing

Publication Analysis

Top Keywords

seismic wave
12
los angeles
8
angeles basin
8
wave propagation
8
ground motion
8
seismic
5
wave simulation
4
simulation printed
4
printed model
4
model los
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!