MAPK and NF-κB pathways are important components of innate immune system in multicellular animals. In some model organisms, the MAP3-kinase TGF-beta-activated kinase 1 (TAK1) have been shown to regulate both MAPK and NF-κB pathways activation to tailor immune responses to pathogens or infections. However, this process is not fully understood in shrimp. In this study, we investigated the effect of TAK1 on MAPK and NF-κB activation in shrimp Litopenaeus vannamei following Vibrio parahaemolyticus infection. We found that shrimp TAK1 could activate c-Jun and Relish, the transcription factors of MAPK pathway and NF-κB pathway, respectively. Specifically, over-expression of shrimp TAK1 was able to strongly induce the activities of both AP-1 and NF-κB reporters. TAK1 was shown to bind several MAP2-kinases, including MKK4, MKK6 and MKK7, and induced their phosphorylations, the hallmarks for MAPK pathways activation. TAK1 knockdown in vivo also inhibited the nuclear translocation of c-Jun and Relish during V. parahaemolyticus infection. Accordingly, ectopic expression of shrimp TAK1 in Drosophila S2 cells increased the cleavage of co-expressed shrimp Relish, and induced the promoter activity of Relish targeted gene Diptericin (Dpt). Furthermore, knockdown of c-Jun and Relish enhanced the sensitivity of shrimp to V. parahaemolyticus infection. These findings indicated that shrimp TAK1 conferred antibacterial protection through regulating the activation of both MAPK pathway and NF-κB pathway, and suggested that the TAK1-MAPK/NF-κB axis could be a potential therapeutic target for enhancing antibacterial responses in crustaceans.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.fsi.2022.03.008 | DOI Listing |
Invest Ophthalmol Vis Sci
January 2025
Harry S. Truman Memorial Veterans' Hospital, Columbia, Missouri, United States.
Purpose: Sulfur mustard gas (SM) exposure to eyes causes multiple corneal injuries including stromal cell loss in vivo. However, mechanisms mediating stromal cell loss/death remains elusive. This study sought to test the novel hypothesis that SM-induced toxicity to human corneal stromal fibroblasts involves ferroptosis mechanism via p38 MAPK signaling.
View Article and Find Full Text PDFCells
December 2024
School of Life Science, University of Technology Sydney, Ultimo, NSW 2007, Australia.
Chronic obstructive pulmonary disease (COPD) is characterized by progressive and incurable airflow obstruction and chronic inflammation. Both TGF-β1 and CXCL8 have been well described as fundamental to COPD progression. DNA methylation and histone acetylation, which are well-understood epigenetic mechanisms regulating gene expression, are associated with COPD progression.
View Article and Find Full Text PDFCells
December 2024
State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang 550014, China.
Erythroleukemia, a complex myeloproliferative disorder presenting as acute or chronic, is characterized by aberrant proliferation and differentiation of erythroid cells. Although nootkatone, a sesquiterpene derived from grapefruit peel and Alaska yellow cedar, has shown anticancer activity predominantly in solid tumors, its effects in erythroleukemia remain unexplored. This study aimed to investigate the impact of nootkatone and its derivatives on erythroleukemia.
View Article and Find Full Text PDFCells
December 2024
Infectious Diseases Department, Clinica Universitaria Colombia, Clínica Colsanitas S.A., Bogotá 111321, Colombia.
Inflammation can positively and negatively affect tumorigenesis based on the duration, scope, and sequence of related events through the regulation of signaling pathways. A transcriptomic analysis of five pulmonary arterial hypertension, twelve Crohn's disease, and twelve ulcerative colitis high throughput sequencing datasets using R language specialized libraries and gene enrichment analyses identified a regulatory network in each inflammatory disease. IRF9 and LINC01089 in pulmonary arterial hypertension are related to the regulation of signaling pathways like MAPK, NOTCH, human papillomavirus, and hepatitis c infection.
View Article and Find Full Text PDFElife
January 2025
Cell Biology, Hospital for Sick Children, Toronto, Canada.
Proliferating animal cells maintain a stable size distribution over generations despite fluctuations in cell growth and division size. Previously, we showed that cell size control involves both cell size checkpoints, which delay cell cycle progression in small cells, and size-dependent regulation of mass accumulation rates (Ginzberg et al., 2018).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!