Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 144
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 144
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 212
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3106
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
In 2019, at the World Economic Forum, DNA data storage was indicated as one of the breakthroughs expected to radically impact the global socio-economic order. Indeed, dry DNA is a relatively stable substance and an extremely capacious information carrier. One gram of DNA can hold up to 455 exabytes, provided that one nucleotide encodes two bits of information. In this critical review, the main attention is paid to nucleinography, meaning the conversion of digital data into nucleotide sequences. The evolution and diversity of approaches intended for encoding data with nucleotides are demonstrated. The most noticeable examples of storing minor as well as considerable quantities of non-biological information in DNA are given. Some issues of DNA data storage are also reported.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.biosystems.2022.104664 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!