Friedreich's Ataxia related Diabetes: Epidemiology and management practices.

Diabetes Res Clin Pract

Division of Endocrinology and Diabetes, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA; Department of Pediatrics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA.

Published: April 2022

Aims: Friedreich's Ataxia (FRDA) is a progressive neuromuscular disorder typically caused by GAA triplet repeat expansions in both frataxin gene alleles. FRDA can be complicated by diabetes mellitus (DM). The objective of this study was to describe the prevalence of, risk factors for, and management practices of FRDA-related DM.

Methods: FACOMS, a prospective, multi-site natural history study, includes 1,104 individuals. Extracted data included the presence of DM and other co-morbidities, genetic diagnosis, and markers of disease severity. We performed detailed medical record review and a survey for the subset of individuals with FRDA-related DM followed at one FACOMS site, Children's Hospital of Philadelphia.

Results: FRDA-related DM was reported by 8.7% of individuals. Age, severe disease, and FRDA cardiac complications were positively associated with DM risk. FRDA-related DM was generally well-controlled, as reflected by HbA1c, though diabetic ketoacidosis did occur. Insulin is the mainstay of treatment (64-74% overall); in adults, metformin use was common and newer glucose-lowering agents were used rarely.

Conclusions: Clinical factors identify individuals at increased risk for FRDA-related DM. Future studies should test strategies for FRDA-related DM screening and management, in particular the potential role for novel glucose-lowering therapies in preventing or delaying FRDA-related cardiac disease.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9075677PMC
http://dx.doi.org/10.1016/j.diabres.2022.109828DOI Listing

Publication Analysis

Top Keywords

friedreich's ataxia
8
management practices
8
risk frda-related
8
frda-related
7
ataxia diabetes
4
diabetes epidemiology
4
epidemiology management
4
practices aims
4
aims friedreich's
4
ataxia frda
4

Similar Publications

Introduction: Friedreich Ataxia (FA) is a multisystem neurodegenerative disease. Affected individuals rely on mobility assistive technologies (MAT) (e.g.

View Article and Find Full Text PDF

Safety and efficacy of omaveloxolone v/s placebo for the treatment of Friedreich's ataxia in patients aged more than 16 years: a systematic review.

Orphanet J Rare Dis

December 2024

Discovery Research Division, Indian Council of Medical Research (ICMR) Headquarters, V. Ramalingaswami Bhawan, Ansari Nagar, P.O. Box 4911, New Delhi, 110029, India.

Background: Friedreich's ataxia (FA) is a rare genetic disorder caused by silencing of the frataxin gene (FXN), which leads to multiorgan damage. Nrf2 is a regulator of FXN, which is a modulator of oxidative stress in animals and humans. Omaveloxolone (Omav) is an Nrf2 activator and has been reported to have antioxidative potential in various disease conditions.

View Article and Find Full Text PDF

Harsh acid oxidation of activated charcoal transforms an insoluble carbon-rich source into water-soluble, disc structures of graphene decorated with multiple oxygen-containing functionalities. We term these pleiotropic nano-enzymes as "pleozymes". A broad redox potential spans many crucial redox reactions including the oxidation of hydrogen sulfide (HS) to polysulfides and thiosulfate, dismutation of the superoxide radical (O*), and oxidation of NADH to NAD.

View Article and Find Full Text PDF

Background And Objectives: Friedreich's Ataxia (FRDA) is a genetic disease that affects a variety of different tissues. The disease is caused by a mutation in the gene ( which is important for the synthesis of iron-sulfur clusters. The primary pathologies of FRDA are loss of motor control and cardiomyopathy.

View Article and Find Full Text PDF

H-DNA is an intramolecular DNA triplex formed by homopurine/homopyrimidine mirror repeats. Since its discovery, the field has advanced from characterizing the structure to discovering its existence and role . H-DNA interacts with cellular machinery in unique ways, stalling DNA and RNA polymerases and causing genome instability.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!