Background/purpose: Metastatic hepatoblastoma continues to pose a significant treatment challenge, primarily because the precise mechanisms involved in metastasis are not fully understood, making cell lines and preclinical models that depict the progression of disease and metastasis-related biology paramount. We aimed to generate and characterize a metastatic hepatoblastoma cell line to create a model for investigation of the molecular mechanisms associated with metastasis.
Materials/methods: Using a murine model of serial tail vein injections of the human hepatoblastoma HuH6 cell line, non-invasive bioluminescence imaging, and dissociation of metastatic pulmonary lesions, we successfully established and characterized the metastatic human hepatoblastoma cell line, HLM_3.
Results: The HLM_3 cells exhibited enhanced tumorigenicity and invasiveness, both in vitro and in vivo compared to the parent HuH6 cell line. Moreover, HLM_3 metastatic hepatoblastoma cells exhibited a stem cell-like phenotype and were more resistant to the standard chemotherapeutic cisplatin.
Conclusion: This newly described metastatic hepatoblastoma cell line offers a novel tool to study mechanisms of tumor metastasis and evaluate new therapeutic strategies for metastatic hepatoblastoma.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9119922 | PMC |
http://dx.doi.org/10.1016/j.jpedsurg.2022.01.063 | DOI Listing |
World J Gastroenterol
January 2025
Department of Oncology Surgery, Cell Therapy and Organ Transplantation, Institute of Biomedicine of Seville, Virgen del Rocio University Hospital, Seville 41013, Spain.
Background: Hepatocellular carcinoma (HCC) is the most common subtype of primary liver cancer with varied incidence and epidemiology worldwide. Sorafenib is still a recommended treatment for a large proportion of patients with advanced HCC. Different patterns of treatment responsiveness have been identified in differentiated hepatoblastoma HepG2 cells and metastatic HCC SNU449 cells.
View Article and Find Full Text PDFMed Chem
January 2025
Department of Pharmacy, Pisa University, Pisa, Italy.
Background: The rise in the frequency of liver cancer all over the world makes it a prominent area of research in the discovery of new drugs or repurposing of existing drugs.
Methods: This article describes the pharmacophore-based structure-activity relationship (3DQSAR) on the secondary metabolites of Alhagi maurorum to inhibit human liver cancer cell lines Hepatocellular carcinoma (HCC) and hepatoma G2 (HepG2) which represents the molecular level understanding for isolated phytochemicals of Alhagi maurorum. The definite features, such as hydrophobic regions, average shape, and active compounds' electrostatic patterns, were mapped to screen phytochemicals.
Pediatr Blood Cancer
March 2025
Cancer and Blood Disease Institute, Children's Hospital Los Angeles, Los Angeles, California, USA.
Arch Toxicol
December 2024
Institute of Food Chemistry, University of Münster, Corrensstraße 45, 48149, Münster, Germany.
Toxic fungal secondary metabolites, referred to as mycotoxins, emerge in moldy food and feed and constitute a potent but often underestimated health threat for humans and animals. They are structurally diverse and can cause diseases after dietary intake even in low concentrations. To elucidate cellular responses and identify cellular targets of mycotoxins, a bottom-up proteomics approach was used.
View Article and Find Full Text PDFBiomolecules
October 2024
INSERM U993, Unité Organisation Nucléaire et Oncogenèse, Institut Pasteur, Université Paris Cité, 75015 Paris, France.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!