Transdermal drug delivery system is a preferable choice to overcome the low bioavailability of oral medication. Elastic liposomes have shown great effectiveness for percutaneous transport of melatonin (MLT). In this study, the elastic liposomes loaded with MLT were prepared using thin-film dispersion method and optimized through the central composite design (CCD) approach. The physicochemical properties and skin permeation against UV-induced skin photoaging efficacy of the developed MLT-ELs were assessed. The average size of the MLT-ELs was about 49 nm with a spherical shape and high encapsulation efficiency (73.91%) and drug loading (9.92%). The results of FTIR, DSC, and XRD revealed that the chemical structure of MLT was not changed after prepared elastic liposomes, and the drug was successfully encapsulated in the elastic liposome membrane material. In vitro skin permeation evaluation showed that the cumulative penetration of elastic liposomes was 1.5 times higher than that of conventional liposomes, highlighting that the elastic liposomes more easily penetrated into the body. The photoaging experiment results indicated that topical MLT-EL treatment ameliorated the skin elasticity, enhanced the skin hydration level, and preserved the integrity of dermal collagen and elastic fibers. It could be concluded that the elastic liposomes might serve as a promising platform for the transdermal delivery of melatonin.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8923809PMC
http://dx.doi.org/10.1155/2022/7135125DOI Listing

Publication Analysis

Top Keywords

elastic liposomes
28
elastic
9
liposomes
8
skin permeation
8
skin
5
application efficacy
4
efficacy melatonin
4
melatonin elastic
4
liposomes photoaging
4
photoaging mice
4

Similar Publications

Cosmetically active compounds (CACs), both of lipophilic and hydrophilic origin, have difficulty reaching the deeper layers of the skin, and this shortcoming significantly reduces their efficacy. One such CAC that occurs naturally in the human body and displays many beneficial properties (via reducing fine lines and wrinkles, tightening skin, improving its elasticity, etc.) is the glycyl-L-histidyl-L-lysine tripeptide complex of copper (GHK-Cu).

View Article and Find Full Text PDF

Transdermal drug delivery (TDD) represents a transformative paradigm in drug administration, offering advantages such as controlled drug release, enhanced patient adherence, and circumvention of hepatic first-pass metabolism. Despite these benefits, the inherent barrier function of the skin, primarily attributed to the stratum corneum, remains a significant impediment to the efficient permeation of therapeutic agents. Recent advancements have focused on macromolecular-assisted permeation enhancers, including carbohydrates, lipids, amino acids, nucleic acids, and cell-penetrating peptides, which modulate skin permeability by transiently altering its structural integrity.

View Article and Find Full Text PDF

We have investigated the effect of length and chemical structure of phospholipid tails on the spontaneous formation of unilamellar liposomal vesicles in binary solute mixtures of cationic drug surfactant and zwitterionic phosphatidylcholine phospholipids. Binary drug surfactant-phospholipid mixtures with four different phospholipids with identical headgroups (two saturated phospholipids 1,2-dimyristoyl-sn-glycero-3-phosphocholine (DMPC, 14:0) and 1,2-Dipalmitoyl-sn-glycero-3-phosphocholine (DPPC, 16:0), and two unsaturated lipids 1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC, 18:1) and 1,2-Dierucoyl-sn-Glycero-3-Phosphatidylcholine (DEPC, 22:1)) combined with two different tricyclic antidepressant drugs (amitriptyline hydrochloride (AMT) and doxepin hydrochloride (DXP)) have been investigated with small-angle neutron scattering (SANS) and cryo-transmission electron microscopy (cryo-TEM). We observe a conspicuous impact of phospholipid tail structure on both micelle-to-vesicle transition point and vesicle size.

View Article and Find Full Text PDF

Effects of Different Concentrations of AmB on the Unsaturated Phospholipid-Cholesterol Membrane Using the Langmuir Monolayer and Liposome Models.

Molecules

November 2024

Xi'an Key Laboratory of Advanced Photo-Electronics Materials and Energy Conversion Device, School of Electronic Information, Xijing University, Xi'an 710123, China.

Article Synopsis
  • Amphotericin B (AmB) causes toxicity to red blood cell membranes, leading to hemolysis and limiting its effective use in treating invasive fungal infections.
  • The study investigated how different concentrations of AmB (5, 45, 85, and 125 μg/mL) interact with unsaturated phospholipid membranes containing cholesterol, using methods like the Langmuir model and fluorescence techniques.
  • Findings revealed that as AmB concentration increases, it not only alters the organization and elasticity of the membrane but also affects the balance between hydrophobic and hydrophilic domains, particularly when concentrations exceed 85 μg/mL.
View Article and Find Full Text PDF

Desmopressin acetate (DA) is a first-line option for the treatment of hemophilia A, von Willebrand's disease, nocturnal enuresis, central diabetes insipidus, and various traumatic injuries. We extended previously reported desmopressin-loaded elastic liposomes (ODEL1) to investigate mechanistic insights into ODEL1 mediated augmented permeation across rat skin. HSPiP software and instrumental techniques such as differential scanning calorimeter (DSC), Fourier Transform infrared (FTIR), scanning electron microscopy (SEM), and fluorescent microscopy provided better understandings of permeation behavior.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!