While the high year-round production of tomatoes has been facilitated by solar greenhouse cultivation, these yields readily fluctuate in response to changing environmental conditions. Mathematic modeling has been applied to forecast phenotypes of tomatoes using environmental measurements (e.g., temperature) as indirect parameters. In this study, metabolome data, as direct parameters reflecting plant internal status, were used to construct a predictive model of the anthesis rate of greenhouse tomatoes. Metabolome data were obtained from tomato leaves and used as variables for linear regression with the least absolute shrinkage and selection operator (LASSO) for prediction. The constructed model accurately predicted the anthesis rate, with an R value of 0.85. Twenty-nine of the 161 metabolites were selected as candidate markers. The selected metabolites were further validated for their association with anthesis rates using the different metabolome datasets. To assess the importance of the selected metabolites in cultivation, the relationships between the metabolites and cultivation conditions were analyzed correspondence analysis. Trigonelline, whose content did not exhibit a diurnal rhythm, displayed major contributions to the cultivation, and is thus a potential metabolic marker for predicting the anthesis rate. This study demonstrates that machine learning can be applied to metabolome data to identify metabolites indicative of agricultural traits.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8923526 | PMC |
http://dx.doi.org/10.3389/fmolb.2022.839051 | DOI Listing |
J Sci Food Agric
December 2024
College of Agriculture, Shanxi Agricultural University, Taigu, China.
Background: In north China, wide-belt sowing (WBS) is widely used in wheat production because it increases the yield by improving the plant distribution and reducing the competition for resources compared with conventional narrow-drill sowing (NDS). Yield formation is also different for wheat varieties with distinct spike types. Therefore, it is important to explore the effects of WBS on the yields of wheat varieties with different spike types.
View Article and Find Full Text PDFFront Plant Sci
December 2024
State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Ministry of Science and Technology, Chengdu, Sichuan, China.
Low solar irradiance reaching the canopy due to fog and heavy haze is a significant yield-limiting factor worldwide. However, how plants adapt to shade stress and the mechanisms underlying the reduction in leaf photosynthetic capacity and grain yield remain unclear. In this study (conducted during 2018-2021), we investigated the impact of light deprivation (60%) at the pre-anthesis and post-anthesis stages on leaf carboxylation efficiency, source-to-sink relationships, sucrose metabolism, and grain yield of wheat cultivars with contrasting shade tolerance.
View Article and Find Full Text PDFGenes (Basel)
October 2024
Institute of Cash Crops, Xinjiang Academy of Agricultural Sciences, Urumqi 830091, China.
Plants (Basel)
October 2024
Crop Research Institute, Shandong Academy of Agricultural Sciences/National Engineering Research Center of Wheat and Maize/State Key Laboratory of Wheat Improvement/Key Laboratory of Wheat Biology and Genetic Improvement in North Yellow & Huai River Valley/Shandong Provincial Technology Innovation Center for Wheat, Jinan 250100, China.
It is a consensus that Earth's climate has been warming. The impact of global warming is asymmetric, that is, there is more substantial warming in the daily minimum surface air temperature and lower warming in the maximum surface air temperature. Previous studies have reported diurnal temperature differences greatly affecting winter wheat yield.
View Article and Find Full Text PDFPlant J
December 2024
Department of Agronomy and Plant Genetics, University of Minnesota, Saint Paul, Minnesota, 55108, USA.
Plant height can be an indicator of plant health across environments and used to identify superior genotypes. Typically plant height is measured at a single timepoint when plants reach terminal height. Evaluating plant height using unoccupied aerial vehicles allows for measurements throughout the growing season, facilitating a better understanding of plant-environment interactions and the genetic basis of this complex trait.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!