Novel aryl guanidinium analogues containing the pyridazin-3(2)-one core were proposed as minor groove binders (MGBs) with the support of molecular docking studies. The target dicationic or monocationic compounds, which show the guanidium group at different positions of the pyridazinone moiety, were synthesized using the corresponding silyl-protected pyridazinones as key intermediates. Pyridazinone scaffolds were converted into the adequate bromoalkyl derivatives, which by reaction with ,'-di-Boc-protected guanidine followed by acid hydrolysis provided the hydrochloride salts - in good yields. The ability of new pyridazin-3(2)-one-based guanidines as DNA binders was studied by means of DNA UV-thermal denaturation experiments. Their antiproliferative activity was also explored in three cancer cell lines (NCI-H460, A2780, and MCF-7). Compounds - with a bis-guanidinium structure display a weak DNA binding affinity and exhibit a reasonable cellular viability inhibition percentage in the three cancer cell lines studied.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8919506PMC
http://dx.doi.org/10.1021/acsmedchemlett.1c00633DOI Listing

Publication Analysis

Top Keywords

minor groove
8
groove binders
8
three cancer
8
cancer cell
8
cell lines
8
novel pyridazin-32-one-based
4
pyridazin-32-one-based guanidine
4
guanidine derivatives
4
derivatives potential
4
dna
4

Similar Publications

Atomistic Insights Into Interaction of Doxorubicin With DNA: From Duplex to Nucleosome.

J Comput Chem

January 2025

Regional Center of Advanced Technologies and Materials, Czech Advanced Technology and Research Institute (CATRIN), Palacký University Olomouc, Olomouc, Czech Republic.

Doxorubicin (DOX) is a widely used chemotherapeutic agent known for intercalating into DNA. However, the exact modes of DOX interactions with various DNA structures remain unclear. Using molecular dynamics (MD) simulations, we explored DOX interactions with DNA duplexes (dsDNA), G-quadruplex, and nucleosome.

View Article and Find Full Text PDF

Mechanism of dsDNA binding, enzyme inhibition, antioxidant activities, and molecular docking studies of taxifolin, daidzein, and S-equol.

Int J Biol Macromol

January 2025

Afsin Vocational School, Department of Chemistry and Chemical Processing Technologies, Kahramanmaras Sutcu Imam University, Kahramanmaras, Turkey. Electronic address:

This study investigated the binding mechanism of taxifolin (TA), daidzein (DA), and S-equol (SQ) flavonoids with fish sperm double helix DNA (dsDNA) under the simulated physiological pH condition using UV-Vis and photoluminescence spectroscopy, as well as viscometric methods. Binding constants (K) for the flavonoids to dsDNA were determined as 1.8 × 10 M for SQ, 1.

View Article and Find Full Text PDF

Purpose: The purpose of this study was to determine the clinical value of diagnostic tests for the long head of the biceps tendon (LHBT) injuries in the setting of a Patte stage 1 supraspinatus tendon rupture.

Methods: This was a prospective cohort multicenter study of 361 patients aged 30 to 80 years with Patte stage 1 distal supraspinatus tendon rupture. The LHBT was assessed clinically by palpation of the bicipital groove, the speed test, the Yergason test and the Kibler test.

View Article and Find Full Text PDF

Cyto-Genotoxic Assessment of Sulfoxaflor in Allium cepa Root Cells and DNA Docking Studies.

Microsc Res Tech

January 2025

Molecular Biology and Genetics Department, Faculty of Engineering and Natural Sciences, Uşak University, Uşak, Turkey.

Sulfoxaflor (SFX) is an insecticide that is commonly used for the control of sap-feeding insects. Since SFX is extensively applied globally, it has been implicated in the substantial induction of environmental toxicity. Therefore, in this study, Allium cepa roots have been employed to elucidate the potential cytogenotoxic effects of SFX in non-target cells by examination of mitotic index (MI), chromosomal aberrations (CAs), and DNA damage.

View Article and Find Full Text PDF

Carbonless DNA.

Phys Chem Chem Phys

January 2025

Faculty of Chemistry, University of Gdańsk, Wita Stwosza 63, 80-308 Gdańsk, Poland.

Carbonless DNA was designed by replacing all carbon atoms in the standard DNA building blocks with boron and nitrogen, ensuring isoelectronicity. Electronic structure quantum chemistry methods (DFT(ωB97XD)/aug-cc-pVDZ) were employed to study both the individual building blocks and the larger carbon-free DNA fragments. The reliability of the results was validated by comparing selected structures and binding energies using more accurate methods such as MP2, CCSD, and SAPT2+3(CCD)δ.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!