The formations of different types of laser-induced periodic surface structures (LIPSS) on the surface of GaP crystals with different laser fluence are researched in experiments. The transition from the high spatial frequency LIPSS (HSFL) to the low spatial frequency LIPSS (LSFL) occurred as the number of the irradiated laser pulse increased. The finite difference time domain method combined with the holographic ablation model is used to simulate the LIPSS formation under the irradiation of multiple pulses. Different types of ripples are predicted by the electromagnetic approach. Results demonstrate that the electromagnetic origins of HSFL and LSFL are due to the interference of incident field and the scattering field under the multi-pulse irradiation.

Download full-text PDF

Source
http://dx.doi.org/10.1364/OE.452577DOI Listing

Publication Analysis

Top Keywords

laser-induced periodic
8
periodic surface
8
surface structures
8
gap crystals
8
spatial frequency
8
frequency lipss
8
electromagnetic origin
4
origin femtosecond
4
femtosecond laser-induced
4
structures gap
4

Similar Publications

The generation of laser-induced periodic surface structures (LIPSS) using femtosecond lasers facilitates the engineering of material surfaces with tailored functional properties. Numerous aspects of their complex formation process are still under debate, despite intensive theoretical and experimental research in recent decades. This particularly concerns the challenge of verifying approaches based on electromagnetic effects or hydrodynamic processes by experiment.

View Article and Find Full Text PDF

This work presents a unique and straightforward method to synthesise hafnium oxide (HfO) and hafnium carbide (HfC) nanoparticles (NPs) and to fabricate hafnium nanostructures (NSs) on a Hf surface. Ultrafast picosecond laser ablation of the Hf metal target was performed in three different liquid media, namely, deionised water (DW), toluene, and anisole, to fabricate HfO and HfC NPs along with Hf NSs. Spherical HfO NPs and nanofibres were formed when Hf was ablated in DW.

View Article and Find Full Text PDF

Background: Ceramic endosseous implant coatings have gained esteem due to their favorable osteoinductive and osteoconductive properties. However, such a layer may be prone to failure under in vivo conditions, which necessitates its modification.

Objectives: The aim of the present study was to modify an electrodeposited hydroxyapatite (HA) coating on titanium (Ti) with ultrashort-pulsed lasers for the incorporation of the ceramic into the sample surface and the texturing of the metal surface.

View Article and Find Full Text PDF

This study investigates how laser-induced surface modifications influence key properties such as wear resistance, hardness, and friction in dry and lubricated conditions. The research applies nanosecond pulsed laser treatment to create random, quasi-random, quasi-periodic, and periodic surface structures on the steel surface, aiming to enhance the wear resistance and reduce the coefficient of friction (COF). The frictional performance between the carbon steel ball and the texturized surface was evaluated, including an analysis of the initial friction phase contact (single, double, and multi-contact), with the surface topography assessed before and after wear.

View Article and Find Full Text PDF

Investigating the bacterial cleaning performance on Zr-BMG with LIPSS after ultrasonic vibration assisted cleaning.

Proc Inst Mech Eng H

December 2024

Guangdong Academy of Science, Guangzhou, Guangdong, China.

High-efficiency and high-quality sterilization technologies for medical materials can significantly reduce iatrogenic infection. This study investigates the synergistic effects of laser-induced periodic surface structures (LIPSS) and ultrasonic cleaning on the removal of bacteria from medical material surfaces. We specifically examined how ultrasonic parameters and structural defects in LIPSS impact the effectiveness of bacterial removal.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!