A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Excitation and manipulation of both magnetic and electric surface plasmons. | LitMetric

AI Article Synopsis

  • Surface plasmons (SPs) are vital in terahertz (THz) near-field photonics, aiding in the development of smaller and more integrated devices, but mostly focus on electric SPs, leaving magnetic SPs underexplored.
  • A new approach combines the ability to convert propagating waves into both magnetic and electric SPs using a single compact device featuring a design of connected slit rings that support distinct oscillating modes.
  • The device employs a metasurface to effectively couple polarized THz beams into separate SP channels with minimal interference and allows for personalizing the wavefronts of both types of SPs, paving the way for advanced on-chip devices with enhanced functionalities in near-field magnetic SP manipulation.

Article Abstract

Surface plasmons (SPs) is the cornerstone in terahertz (THz) near-field photonics, which play crucial roles in the miniaturization and integration of functional devices. The excitation and manipulation of SPs, however, is currently restricted to electric SPs paradigm, while magnetic SPs receive less attention despite the importance of magnetic light-matter interactions. Here, a scheme is proposed to simultaneously convert the propagating waves in free space into magnetic and electric SPs using a single ultracompact device. First, a plasmonic structure composed of connected slit rings is designed and demonstrated to support both electric and magnetic SPs, which is ascribed to the two distinct eigenmodes of oscillating electrons and vortex currents, respectively. Second, with the assistance of an anisotropic and gradient metasurface, orthogonal linear polarized components of incident THz beams are coupled into different electric and magnetic SP channels with little crosstalk. Furthermore, by encoding two distinct polarization-dependent phase profile into the metasurface, it is shown that the resulting meta-device can individually tailor the wavefronts of magnetic and electric SPs, thus simultaneously engineering magnetic and electric near-field distributions. This work can pave the road to realize bi-channel and on-chip devices, and inspire more integrated functionalities especially related to near-field manipulations of magnetic SPs.

Download full-text PDF

Source
http://dx.doi.org/10.1364/OE.452595DOI Listing

Publication Analysis

Top Keywords

magnetic electric
16
electric sps
12
magnetic sps
12
magnetic
9
excitation manipulation
8
surface plasmons
8
sps
8
electric magnetic
8
electric
7
manipulation magnetic
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!