The terahertz frequency modulated continuous wave (THz FMCW) imaging has proved to be a novel nondestructive testing (NDT) technology for non-metal materials, and the large bandwidth is usually required to meet high range resolution demands in many applications such as multilayer sample under test (SUT). However, broadband THz hardware is difficult to design. In this paper, an ultra-wideband THz FMCW generation method is proposed, which provides frequency modulation bandwidths of up to 386 GHz by time-division multiplexing. Furthermore, an ultra-wideband signal fusion algorithm (USFA) is also proposed and significantly improves the range resolution to 0.46 mm in air. Results from the artificially constructed multilayer structure demonstrate the superiority and effectiveness of our method quantitatively.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1364/OE.450985 | DOI Listing |
Ultrasonics
December 2024
Universidad Carlos III de Madrid, Avenida de la Universidad, 30, Leganes, Madrid, Spain.
The most common transducers used to generate ultrasound in medical applications are based on short electrical pulses applied to piezoelectric transducers and capacitive micromachined ultrasound transducers. However, piezoelectric transducers have a limited frequency bandwidth, defined by their physical thickness, and capacitive micromachined ultrasound transducers have poor transmission efficiency. The high frequency cutoff limits the spatial resolution of ultrasonic images.
View Article and Find Full Text PDFJMIR Aging
December 2024
University of Alberta, Edmonton, AB, Canada.
Sensors (Basel)
October 2024
Department of Maritime ICT & Mobility Research, Korea Institute of Ocean Science & Technology, 385, Haeyang-ro, Yeongdo-gu, Busan 49111, Republic of Korea.
Sensors (Basel)
October 2024
Engineering Center of SHMEC for Space Information and GNSS, East China Normal University, Shanghai 200241, China.
To address the challenges of low accuracy in indoor positioning caused by factors such as signal interference and visual distortions, this paper proposes a novel method that integrates ultra-wideband (UWB) technology with visual positioning. In the UWB positioning module, the powerful feature-extraction ability of the graph convolutional network (GCN) is used to integrate the features of adjacent positioning points and improve positioning accuracy. In the visual positioning module, the residual results learned from the bidirectional gate recurrent unit (Bi-GRU) network are compensated into the mathematical visual positioning model's solution results to improve the positioning results' continuity.
View Article and Find Full Text PDFACS Appl Mater Interfaces
October 2024
Electronic Materials Research Laboratory, Key Laboratory of the Ministry of Education & International Center for Dielectric Research, School of Electronic Science and Engineering, Xi'an Jiaotong University, Xi'an 710049, Shaanxi, China.
The employment of ultra-low permittivity materials in the configuration of antennas has been demonstrated to augment the antenna bandwidth and diminish signal delay effectively. This study presents three ultra-low permittivity metaphosphate microwave dielectric ceramics (MWDCs). The ALaPO (A = Li, Na, K) metaphosphate ceramics, which all belong to the monoclinic crystal system, exhibit extremely low permittivity (ε ≈ 5) and excellent quality factor (· > 10,000 GHz) at a low sintering temperature ( < 950 °C).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!