Liquid crystals (LCs) have been a vital component of modern communication and photonic technologies. However, traditional LC alignment on polyimide (PI) requires mechanically rubbing treatment to control LC orientation, suffering from dust particles, surface damage, and electrostatic charges. In this paper, LC alignment on organic single-crystal rubrene (SCR) has been studied and used to fabricate rubbing-free LC devices. A rubrene/toluene solution is spin-coated on the indium-tin-oxide (ITO) substrate and transformed thereafter to the orthorhombic SCR after annealing. Experimental result reveals that SCR-based LC cell has a homogeneous alignment geometry, the pretilt angle of LCs is low and the orientation of LCs is determined with capillary filling action of LCs. LC alignment on SCR performs a wider thermal tolerance than that on PI by virtue of the strong anchoring nature of LCs on SCR due to van der Waals and π-π electron stacking interactions between the rubrene and LCs. SCR-based LC cell performs a lower operation voltage, faster response time, and higher voltage holding ratio than the traditional PI-based LC cell. Organic SCR enables to play a role as weakly conductive alignment layer without rubbing treatment and offers versatile function to develop novel LC devices.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1364/OE.454130 | DOI Listing |
RSC Adv
January 2025
Department of Organic Chemistry, University of Debrecen Egyetem Square 1 Debrecen 4032 Hungary
Domino Knoevenagel-cyclization reactions of styrene substrates, containing an -(-formyl)aryl subunit, were carried out with -substituted 2-cyanoacetamides to prepare tetrahydro-4-pyrano[3,4-]quinolone and hexahydrobenzo[]phenanthridine derivatives by competing IMHDA and IMSDA cyclization, respectively. The diastereoselective IMHDA step with α,β-unsaturated amide, thioamide, ester and ketone subunits as a heterodiene produced condensed chiral tetrahydropyran or thiopyran derivatives, which in the case of Meldrum's acid were reacted further with amine nucleophiles in a multistep domino sequence. In order to simplify the benzene-condensed tricyclic core of the targets and get access to hexahydro-1-pyrano[3,4-]pyridine derivatives, a truncated substrate was reacted with cyclic and acyclic active methylene reagents in diastereoselective Knoevenagel-IMHDA reactions to prepare novel condensed heterocyclic scaffolds.
View Article and Find Full Text PDFDalton Trans
January 2025
Deutsches Elektronen-Synchrotron DESY, Notkestr. 85, 22607 Hamburg, Germany.
Two Co(II) mixed-ligand metal-organic frameworks (MOFs) based on 2-methylimidazole and trimesate were synthesised at room temperature. The structure and properties of the two MOFs, named material Deutsches Elektronen Synchrotron-1 and -2 (mDESY-1 and mDESY-2), were verified by single crystal X-ray diffraction (SCXRD), powder X-ray diffraction (PXRD), SQUID magnetic susceptibility and N adsorption. The structural analysis indicates that mDESY-1 is a 3D ionic framework with 2-methyl-1-imidazol-3-ium counterions residing in its pores, while mDESY-2 is a 2D neutral framework isostructural to ITH-1, with water as a co-crystallising solvent.
View Article and Find Full Text PDFJ Am Chem Soc
January 2025
Institut de Chimie de Strasbourg, CNRS UMR 7177, Université de Strasbourg, 4, rue Blaise Pascal, Strasbourg 67000, France.
The discovery of a stable organic radical formed under mild, clean, and efficient light-mediated conditions is reported. The structure of the stable acridinium-based radical photoproduct was unambiguously established by single-crystal X-ray diffraction, mass spectrometry, and in solution by EPR, UV/vis, and NMR spectroscopies. The photochemical mechanism of its formation has been elucidated by photophysical experiments coupled with EPR experiments and theoretical investigations.
View Article and Find Full Text PDFLangmuir
January 2025
Department of Applied Chemistry, Aligarh Muslim University, Aligarh, 202002, India.
A porous and flexible Zn-MOF was synthesized under solvothermal conditions by using the ligand 2,5-furandicarboxylic acid (2,5-FDA). This flexible Zn-MOF demonstrates a temperature-triggered breathing effect. At low temperature (100 K), we obtained the high-symmetry MOF denoted as with a unit cell volume of 1958 Å, characterized by triangular narrow pore (np) channels.
View Article and Find Full Text PDFJ Am Chem Soc
January 2025
Department of Chemistry, Texas A&M University, College Station, Texas 77843, United States.
Metal-organic frameworks (MOFs) have played a pivotal role as rapid and effective luminescent sensing materials. Numerous MOFs with diverse characteristics have been meticulously designed for target analytes. Previous studies have highlighted the factors of spectral characteristics, energy levels, interaction forces, and sensor stabilities for the luminescent sensing performance in response to a specific analyte.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!