Laser cooled ions trapped in a linear Paul trap are long-standing ideal candidates for realizing quantum simulation, especially of many-body systems. The properties that contribute to this also provide the opportunity to demonstrate unexpected quantum phenomena in few-body systems. A pair of ions interacting in such traps exchange vibrational quanta through the Coulomb interaction. This linear interaction can be anharmonically modulated by an elementary coupling to the internal two-level structure of one of the ions. Driven by thermal energy in the passively coupled oscillators, which are themselves coupled to the internal ground states of the ions, the nonlinear interaction autonomously and unconditionally generates entanglement between the mechanical modes of the ions. We examine this counter-intuitive thermally induced entanglement for several experimentally feasible model systems and propose parameter regimes where state-of-the-art trapped ion systems can produce such phenomena. In addition, we demonstrate a multiqubit enhancement of such thermally induced entanglements.

Download full-text PDF

Source
http://dx.doi.org/10.1364/OE.449811DOI Listing

Publication Analysis

Top Keywords

thermally induced
12
induced entanglement
8
ions
5
entanglement atomic
4
atomic oscillators
4
oscillators laser
4
laser cooled
4
cooled ions
4
ions trapped
4
trapped linear
4

Similar Publications

Neuropathic pain (NP) imposes a significant burden on individuals, manifesting as nociceptive anaphylaxis, hypersensitivity, and spontaneous pain. Previous studies have shown that traumatic stress in the nervous system can lead to excessive production of hydrogen sulfide (HS) in the gut. As a toxic gas, it can damage the nervous system through the gut-brain axis.

View Article and Find Full Text PDF

Ambient temperature leads to differential immune strategies in the subterranean rodent Ctenomys talarum.

J Exp Biol

January 2025

Grupo de Ecología Fisiológica y del Comportamiento. Instituto de Investigaciones Marinas y Costeras (IIMyC). CONICET - Universidad Nacional de Mar del Plata, Argentina.

Animal thermoregulation may have significant costs and compete directly or indirectly with other energetically demanding processes, such as immune function. Although the subterranean environment is characterized by thermally-stable conditions, small changes in ambient temperature could be critical in shaping immunity. However, little is known about the effects of ambient temperature, in naturally varying ranges, on immunity of wild species.

View Article and Find Full Text PDF

Low temperature thermal RAFT depolymerization: the effect of Z-group substituents on molecular weight control and yield.

Chem Sci

January 2025

Laboratory of Polymeric Materials, Department of Materials, ETH Zurich Vladimir Prelog Weg 5 8093 Zurich Switzerland

The labile end-groups inherent to many controlled radical polymerization methodologies, including atom transfer radical polymerization (ATRP) and reversible addition-fragmentation chain-transfer (RAFT) polymerization, can trigger the efficient chemical recycling of polymethacrylates yielding high percentages of pristine monomer. Yet, current thermal solution ATRP and RAFT depolymerization strategies require relatively high temperatures ( 120-170 °C) to proceed, with slower depolymerization rates, and moderate yields often reported under milder reaction conditions ( lower temperatures). In this work, we seek to promote the low temperature RAFT depolymerization of polymethacrylates regulating the Z-group substitution of dithiobenzoate.

View Article and Find Full Text PDF

In this study, kaolinite-poly(urea-formaldehyde) was successfully prepared through the polymerization of urea intercalated within the kaolinite structure. Polymerization was carried out under ambient conditions by immersing kaolinite-urea in formaldehyde. Evidence of urea intercalation and polymerization was obtained from FTIR, XRD, and thermal analysis (TG-DSC).

View Article and Find Full Text PDF

Plasma is considered as the fourth state of matter, and atmospheric cold plasma (cold plasma) is a type of plasma consisting of ionized gases containing excited species of atoms, molecules, ions, and free radicals at near room temperature. Cold plasma is generated by applying high voltage to gases, causing it to ionize thus forming plasma. Although cold plasma has been found to break seed dormancy and improve germination rate, only a few studies have explored the potential of cold plasma against insect herbivory.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!