Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Background: Alveolar macrophages (AMs) play a demonstrative role in acute lung injury (ALI). Exosomes act as signaling molecules to regulate cell-to-cell communication by releasing RNAs. Transfer RNA-derived fragments (tRFs) possess potential functions in multiple diseases through ferroptosis. The present study aims to reveal the role of AM-derived exosomal tRFs in ALI and to identify the relationship to ferroptosis.
Methods: ALI mice model was established by lipopolysaccharide (LPS) induction. RNA sequencing was performed to identify the tRFs profile in bronchoalveolar lavage fluid (BALF) exosomes of ALI mice. After interfering with the expression of candidate tRFs in AMs or alveolar epithelial cells (MLE-12), the effect of oxidative stress and expression of ferroptosis-related proteins were detected.
Results: Exosomes isolated from BALF of ALI mice were dominated by a macrophage immunophenotype. RNA-sequencing identified 4 up- and 10 down-regulated differentially expressed tRFs (DEtRFs), among which tRF-22-8BWS7K092 expression was significantly increased in LPS-induced macrophage-derived exosomes (LPS-exo). Hippo signaling pathway was the most significantly enriched KEGG pathways for DEtRFs. LPS-exo inhibited cell viability and the expression of GPX4 and FTH1, and enhanced oxidative stress in MLE-12 cells. Ferroptosis inhibitor reversed the inhibition of LPS-exo on cell viability and tRF-22-8BWS7K092 inhibitor rescued above effect of LPS-exo on MLE-12 cells. Besides, tRF-22-8BWS7K092 could activate Hippo signaling pathway by binding Wnt5B, inducing ferroptosis in MLE-12 cells.
Conclusion: BALF exosomes of ALI mice were mainly derived from AMs. AM-derived exosomal tRF-22-8BWS7K092 activates the Hippo signaling pathway to induce ferroptosis, thus contributing to the pathogenesis of ALI.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.intimp.2022.108690 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!