Klebsiella pneumoniae is a common strain of bacterial fermentation to produce 1, 3-propanediol (1, 3-PDO). In general, the production of 1, 3-PDO by wild-type K. pneumoniae is relatively low. Therefore, a new gene manipulation of K. pneumoniae was developed to improve the production of 1, 3-PDO by overexpressing in the reduction pathway and attenuating the by-products in the oxidation pathway. Firstly, dhaB and/or dhaT were overexpressed in the reduction pathway. Considering the cost of IPTG, the constitutive promoter P32 was selected to express the key gene. By comparing K.P. pET28a-P32-dhaT with the original strain, the production of 1, 3-PDO was increased by 19.7%, from 12.97 to 15.53 g l (in a 250 ml shaker flask). Secondly, three lldD and budC regulatory sites were selected in the by-product pathway, respectively, using the CRISPR-dCas9 system, and the optimal regulatory sites were selected following the 1, 3-PDO production. As a result, the 1, 3-PDO production by K.P. L1-pRH2521 and K.P. B3-pRH2521 reached up to 19.16 and 18.74 g l , which was increased by 47.7% and 44.5% respectively. Overexpressing dhaT and inhibiting expression of lldD and budC were combined to further enhance the ability of K. pneumoniae to produce 1, 3-PDO. The 1, 3-PDO production by K.P. L1-B3-PRH2521-P32-dhaT reached 57.85 g l in a 7.5 l fermentation tank (with Na neutralizer), which is higher than that of the original strain. This is the first time that the 1, 3-PDO production was improved in K. pneumoniae by overexpressing the key gene and attenuating by-product synthesis in the CRISPR-dCas9 system. This study reports an efficient approach to regulate the expression of genes in K. pneumoniae to increase the 1, 3-PDO production, and such a strategy may be useful to modify other strains to produce valuable chemicals.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9249332 | PMC |
http://dx.doi.org/10.1111/1751-7915.14033 | DOI Listing |
Heliyon
December 2024
State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian, 361005, China.
The pathway for producing 1,3-propanediol (1,3-PDO) from methyl 3-hydroxypropionate (3-HPM) has great application potential. However, the reaction is sensitive to temperature and results in reduced product selectivity at high temperatures. This study explores the use of low-temperature active Cu-In bimetallic catalysts for the 3-HPM reaction.
View Article and Find Full Text PDFFront Bioeng Biotechnol
November 2024
State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China.
1,3-Propanediol (1,3-PDO) is one of the important organic chemical materials and is widely used in polyester synthesis, and it also shows great potential in medicine, cosmetics, resins, and biodegradable plastics. So far, 1,3-PDO mainly comes from chemical synthesis. However, the by-products and the side effects during chemical synthesis of 1,3-PDO bring about serious damage to the environment.
View Article and Find Full Text PDFBiotechnol Bioeng
February 2025
Faculty of Biotechnology, Federal University of Pará, Belém, Brazil.
Mathematical modeling and computer simulation are fundamental for optimizing biotechnological processes, enabling cost reduction and scalability, thereby driving advancements in the bioindustry. In this work, mathematical modeling and estimation of fermentative kinetic parameters were carried out to produce 1,3-propanediol (1,3-PDO) from residual glycerol and Klebsiella pneumoniae BLh-1. The Markov chain Monte Carlo method, using the Metropolis-Hastings algorithm, was applied to experimental data from a batch bioreactor under aerobic and anaerobic conditions.
View Article and Find Full Text PDFSheng Wu Gong Cheng Xue Bao
August 2024
Laboratory of Engineering Biology for Low-Carbon Manufacturing, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China.
1, 3-propanediol (1, 3-PDO) is an important diol with wide applications in the pharmaceutical, food, and cosmetics industries. In addition, 1, 3-PDO serves as a crucial monomer in the synthesis of polytrimethylene terephthalate, an important synthetic fiber material. Microbial conversion of renewable resources such as glucose into 1, 3-PDO has been industrialized due to its environmentally friendly, energy-efficient, safe, and sustainable characteristics.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!