Free Energy-Based Computational Methods for the Study of Protein-Peptide Binding Equilibria.

Methods Mol Biol

Department of Chemistry, Ph.D. Program in Biochemistry and Ph.D. Program in Chemistry at The Graduate Center of the City University of New York, Brooklyn College of the City University of New York, New York, NY, USA.

Published: March 2022

This chapter discusses the theory and application of physics-based free energy methods to estimate protein-peptide binding free energies. It presents a statistical mechanics formulation of molecular binding, which is then specialized in three methodologies: (1) alchemical absolute binding free energy estimation with implicit solvation, (2) alchemical relative binding free energy estimation with explicit solvation, and (3) potential of mean force binding free energy estimation. Case studies of protein-peptide binding application taken from the recent literature are discussed for each method.

Download full-text PDF

Source
http://dx.doi.org/10.1007/978-1-0716-1855-4_15DOI Listing

Publication Analysis

Top Keywords

free energy
16
binding free
16
protein-peptide binding
12
energy estimation
12
binding
7
free
6
free energy-based
4
energy-based computational
4
computational methods
4
methods study
4

Similar Publications

Protective Coating of Single-Crystalline Ni-Rich Cathode Enables Fast Charging in All-Solid-State Batteries.

ACS Nano

January 2025

Battery and Electrochemistry Laboratory (BELLA), Institute of Nanotechnology, Karlsruhe Institute of Technology (KIT), Kaiserstr. 12, Karlsruhe 76131, Germany.

Improving interfacial stability between cathode active material (CAM) and solid electrolyte (SE) is vital for developing high-performance all-solid-state batteries (ASSBs), with compatibility issues among the cell components representing a major challenge. CAM surface coating with a chemically inert ion conductor is a promising approach to suppress side reactions occurring at the cathode interfaces. Another strategy to mitigate mechanical degradation involves utilizing single-crystalline particle morphologies.

View Article and Find Full Text PDF

Anti-icing properties of polar bear fur.

Sci Adv

January 2025

Department of Physics and Technology, University of Bergen, Allegaten 55, Bergen 5007, Norway.

The polar bear () is the only Arctic land mammal that dives into water to hunt. Despite thermal insulation provided by blubber and fur layers and low Arctic temperatures, their fur is typically observed to be free of ice. This study investigates the anti-icing properties of polar bear fur.

View Article and Find Full Text PDF

Solvent-Environment Dependence of the Excess Chemical Potential and Its Computation Scheme Formulated through Error Minimization.

J Chem Theory Comput

January 2025

Division of Chemical Engineering, Graduate School of Engineering Science, Osaka University, Toyonaka, Osaka 560-8531, Japan.

Solvent environment may significantly affect the equilibria involving flexible solute species, such as proteins and polymers. In the present work, a computation scheme is formulated for the change in the excess chemical potential of a flexible solute molecule upon variation of the solvent condition. The formulation adopts the scheme of error minimization in parallel to the method of Bennett acceptance ratio, and an exact expression is presented that provides the change in the excess chemical potential from solvation free energies computed in two solvent conditions of interest.

View Article and Find Full Text PDF

The daily light-dark cycle is a recurrent and predictable environmental phenomenon to which many organisms, including cyanobacteria, have evolved to adapt. Understanding how cyanobacteria alter their metabolic attributes in response to subjective light or dark growth may provide key features for developing strains with improved photosynthetic efficiency and applications in enhanced carbon sequestration and renewable energy. Here, we undertook a label-free proteomic approach to investigate the effect of extended light (LL) or extended dark (DD) conditions on the unicellular cyanobacterium ATCC 51142.

View Article and Find Full Text PDF

The bismuth monolayer has recently been experimentally identified as a novel platform for the investigation of two-dimensional single-element ferroelectric system. Here, we model the potential energy surface of a bismuth monolayer by employing a message-passing neural network and achieve an error smaller than 1.2 meV per atom.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!