The rapid tempo of adaptation.

Science

Department of Biology, University of Fribourg, Fribourg, Switzerland.

Published: March 2022

Selection in fruit flies leads to fast adaption to seasonal changes.

Download full-text PDF

Source
http://dx.doi.org/10.1126/science.abo1817DOI Listing

Publication Analysis

Top Keywords

rapid tempo
4
tempo adaptation
4
adaptation selection
4
selection fruit
4
fruit flies
4
flies leads
4
leads fast
4
fast adaption
4
adaption seasonal
4
seasonal changes
4

Similar Publications

An End-To-End Speech Recognition Model for the North Shaanxi Dialect: Design and Evaluation.

Sensors (Basel)

January 2025

SHCCIG Yubei Coal Industry Co., Ltd., Xi'an 710900, China.

The coal mining industry in Northern Shaanxi is robust, with a prevalent use of the local dialect, known as "Shapu", characterized by a distinct Northern Shaanxi accent. This study addresses the practical need for speech recognition in this dialect. We propose an end-to-end speech recognition model for the North Shaanxi dialect, leveraging the Conformer architecture.

View Article and Find Full Text PDF

Engineered sulfonated porous carbon/cellulose nanofiber hybrid membrane for high-efficiency osmotic energy conversion applications.

Int J Biol Macromol

January 2025

Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, China; International Innovation Center for Forest Chemicals and Materials, Nanjing Forestry University, Nanjing 210037, China. Electronic address:

Harnessing ionic gradients to generate electricity has inspired the development of nanofluidic membranes with charged nanochannels for osmotic energy conversion. However, achieving high-performance osmotic energy output remains elusive due to the trade-off between ion selectivity and nanochannel membrane permeability. In this study, we report a homogeneous nanofluidic membrane, composed of sulfonated nanoporous carbon (SPC) and TEMPO-oxidized cellulose nanofibers (T-CNF), engineered to overcome these limitations.

View Article and Find Full Text PDF

In situ growth of defective ZIF-8 on TEMPO-oxidized cellulose nanofibrils for rapid response release of curcumin in food preservation.

Carbohydr Polym

March 2025

Liaoning Key Lab of Lignocellulose Chemistry and BioMaterials, Liaoning Collaborative Innovation Center for Lignocellulosic Biorefinery, College of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian 116034, China. Electronic address:

Uncontrolled release of active agents in active packaging reduces antimicrobial efficacy, hindering the effective protection of perishable products from microbial infection. Herein, a novel defective engineering was proposed to design defective and hollow ZIF-8 structures grown on TEMPO oxidized cellulose nanofibrils (TOCNFs) and use them as fast-reacting nanocarriers for loading and controlled release curcumin (Cur) in sodium alginate (SA) active packaging systems (CZT-Cur-SA). By employing stable chelation between tannic acid (TA) and ZIF-8 zinc ions, the connections between zinc ions and imidazole ligands were severed to form a loose and hollow structure, which facilitates the rapid reaction and release of active ingredients triggered by pH changes in the microenvironment.

View Article and Find Full Text PDF

Enhanced mite control and agricultural safety with etoxazole-loaded chitin nanocrystals: Synthesis, characterization, and ecological impacts.

Pestic Biochem Physiol

December 2024

College of Plant Protection, Southwest University, Chongqing, China; Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River (Ministry of Education), Southwest University, Chongqing, China.

Chitin nanocrystals (ChNCs), known for their high aspect ratio, surface charge, and mobility, are promising bio-based nanomaterials for drug delivery. However, their potential as pesticide carriers in agriculture remains underexplored. Etoxazole, a diphenyl oxalate acaricide, effectively inhibits egg hatching and the normal molting process in mites but suffers from rapid degradation and short persistence in field applications.

View Article and Find Full Text PDF

Colonization of a novel habitat is often followed by phenotypic diversification in the wake of ecological opportunity. However, some habitats should be inherently more constraining than others if the challenges of that environment offer few evolutionary solutions. We examined this push-and-pull on macroevolutionary diversification following habitat transitions in the anglerfishes (Lophiiformes).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!