Solution-Processed Electron-Transport Layer-free Organic Photovoltaics with Liquid Metal Cathodes.

ACS Appl Mater Interfaces

Electrical and Electronic Engineering and Information Systems, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan.

Published: March 2022

Flexible, lightweight, and large-area solar cells provide new power supply opportunities in the renewable energy field and facilitate the supply of power to internet-of-things devices and wearable devices. The choice of printing process technologies is a key parameter for such flexible power sources because of their energy-saving process technology and high throughput rate. In addition to selecting the appropriate printing method for the active and charge transport layers, the development of printed electrodes is critical. Numerous printable materials have been developed to replace conventional evaporated top electrodes. However, achieving fully solution-processed organic photovoltaics (OPVs) with power conversion efficiency (PCE) comparable to OPVs with vacuum-deposited transparent and top electrodes is challenging. This is because of the difficulty of forming a uniform interface between the top solution-processed electrode and the active layers while preventing deterioration. In this study, an electron transport layer-free, eutectic gallium-indium (EGaIn) top-cathode strategy was developed and a record PCE of 12.7% in fully solution-processed, flexible OPVs was achieved. Direct coating of EGaIn on the active layer, in a nitrogen atmosphere, is conducive for energy band matching and obtaining physically perfect interfaces without any penetrations or voids. An average PCE of 14.1% and enhanced operating stability, comparable to conventional OPVs, were achieved with indium tin oxide transparent electrodes by eliminating the electron-transport layer. The fully solution-processed flexible OPVs fabricated with the embedded silver nanowire strategy in ultrathin transparent polyimide, achieved an average PCE of 12.7%, representing a promising technique to meet green and high-throughput energy demands.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acsami.1c24235DOI Listing

Publication Analysis

Top Keywords

fully solution-processed
12
organic photovoltaics
8
top electrodes
8
pce 127%
8
solution-processed flexible
8
flexible opvs
8
opvs achieved
8
average pce
8
solution-processed
5
opvs
5

Similar Publications

Realizing low voltage-driven bright and stable quantum dot light-emitting diodes through energy landscape flattening.

Light Sci Appl

January 2025

Key Laboratory for Special Functional Materials of Ministry of Education, National & Local Joint Engineering Research Center for High-efficiency Display and Lighting Technology, Henan University, 475004, Kaifeng, China.

Solution-processed quantum dot light-emitting diodes (QLEDs) hold great potential as competitive candidates for display and lighting applications. However, the serious energy disorder between the quantum dots (QDs) and hole transport layer (HTL) makes it challenging to achieve high-performance devices at lower voltage ranges. Here, we introduce "giant" fully alloy CdZnSe/ZnSeS core/shell QDs (size ~ 19 nm) as the emitting layer to build high-efficient and stable QLEDs.

View Article and Find Full Text PDF

Impact of the Electrode Material on the Performance of Light-Emitting Electrochemical Cells.

ACS Appl Mater Interfaces

January 2025

The Organic Photonics and Electronics Group, Department of Physics, Umeå University, SE-90187 Umeå, Sweden.

Light-emitting electrochemical cells (LECs) are promising candidates for fully solution-processed lighting applications because they can comprise a single active-material layer and air-stable electrodes. While their performance is often claimed to be independent of the electrode material selection due to the in situ formation of electric double layers (EDLs), we demonstrate conceptually and experimentally that this understanding needs to be modified. Specifically, the exciton generation zone is observed to be affected by the electrode work function.

View Article and Find Full Text PDF

Green solvent strategies for the sustainable development of perovskite solar cells.

Chem Commun (Camb)

January 2025

Department of Chemical and Biological Engineering, Korea University, Seoul, 02841, Republic of Korea.

Perovskite solar cells have been of great interest over the past decade, reaching a remarkable power conversion efficiency of 26.7%, which is comparable to best performing silicon devices. Moreover, the capability of perovskite solar cells to be solution-processed at low cost makes them an ideal candidate for future photovoltaic systems that could replace expensive silicon and III-V systems.

View Article and Find Full Text PDF

Spin coating stands out as the most employed thin-film deposition technique across a variety of scientific fields. Particularly in the past two decades, spin coaters have become increasingly popular due to the emergence of solution-processed semiconductors such as quantum dots and perovskites. However, acquiring commercial spin coaters from reputable suppliers remains a significant financial burden for many laboratories, particularly for smaller research or educational facilities.

View Article and Find Full Text PDF

This work unveils critical insights through spectroscopic analysis highlighting electrical phenomena and oxygen vacancy generation in self-aligned fully solution-processed oxide thin-film transistors (TFTs). Ar inductively coupled plasma treatment was conducted to fabricate an amorphous indium zinc oxide (a-InZnO) TFT in a self-aligned process. Results showed that the Ar plasma-activated a-InZnO regions became conductive, which means that a homogeneous layer can act as both channel and electrode in the device.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!