A laser-induced cavitation bubble shock forming technology is proposed for microgroove formation in thin copper. It is stamped by using the impact pressure generated by the laser breakdown of liquid. The impact-induced micro-formation of thin copper is studied by numerical simulation and experimentation. A finite-element model is developed, and the impact pressure created by laser-induced cavitation is measured to study the spatial distribution of impact pressure. The laser-induced cavitation process of the high-speed impact on thin copper is numerically simulated. The results of simulations are consistent with those of experiments, confirming the model's accuracy. The simulation is then used to study the dynamic formation and deformation behavior of the laser-induced cavitation impact of thin copper. The stress and thickness distributions during the formation of microgrooves in thin copper are also investigated. Furthermore, the influence of laser fluence and copper thickness on formation is studied. The results reveal that the high-speed impact forming of thin copper by laser-induced cavitation is due to three impact forces: a plasma shock wave, a cavitation shock wave, and a microjet, and this technology can be used to form thin metal walls.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1364/AO.452143 | DOI Listing |
Sci Rep
December 2024
Department of Materials and Metallurgical Engineering, Amirkabir University of Technology, Tehran, 15875-4413, Iran.
This study explores the impact of metallic shells by electroforming method on the mechanical behavior of thermoplastic polyurethane (TPU)-based lattice structures. First, the TPU lattice structures were printed by additive manufacturing technique. Then layers of Ni and Cu as a thin shell were dressed on the TPU lattice structures in the electroforming baths of Ni and Cu solutions.
View Article and Find Full Text PDFNanomaterials (Basel)
December 2024
Division of Physics, Engineering, Mathematics and Computer Sciences and Optical Science Center for Applied Research, Delaware State University, Dover, DE 19901, USA.
This study offers a comprehensive summary of the current states as well as potential future directions of transparent conducting oxides (TCOs), particularly tin-doped indium oxide (ITO), the most readily accessible TCO on the market. Solar cells, flat panel displays (FPDs), liquid crystal displays (LCDs), antireflection (AR) coatings for airbus windows, photovoltaic and optoelectronic devices, transparent p-n junction diodes, etc. are a few of the best uses for this material.
View Article and Find Full Text PDFSmall
December 2024
Institute of Photoelectronic Thin Film Devices and Technology, Renewable Energy Conversion and Storage Center, State Key Laboratory of Photovoltaic Materials and Cells, Nankai University, Tianjin, 300350, P. R. China.
Photovoltaic-driven electrochemical (PV-EC) carbon dioxide reduction (COR) coupled with sulfide oxidation (SOR) can efficiently convert the solar energy into chemical energy, expanding its applications. However, developing low-cost electrocatalysts that exhibit high selectivity and efficiency for both COR and SOR remains a challenge. Herein, a bifunctional copper selenide catalyst is developed with copper vacancies (v-CuSe) for the COR-SOR.
View Article and Find Full Text PDFACS Appl Mater Interfaces
December 2024
Department of Materials Science and Engineering, Seoul National University, Seoul 08826, Republic of Korea.
Achieving precise and cost-effective etching in the field of silicon three-dimensional (3D) structure fabrication remains a significant challenge. Here, we present the successful fabrication of microscale anisotropic Si structures with an etching anisotropy of 0.73 using Cu-metal-assisted chemical etching (Cu-MACE) and propose a mechanism to elucidate the chemical behavior of Cu within the MACE solution.
View Article and Find Full Text PDFACS Appl Mater Interfaces
December 2024
Laboratorio de Diseño y Optimización de Recubrimientos Avanzados (DORA-Lab), CIMAV-Mty/TECNL-CIIT, Parque de Investigación e Innovación Tecnológica, Apodaca, Nuevo León 66629, México.
Ongoing research in metal chalcogenide semiconductors aims to develop alternative materials for optoelectronic devices. However, due to cost and environmental considerations, there is an increasing emphasis on utilizing green materials. This shift toward sustainable materials and processing is expected to become essential in materials research.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!