Reconfigurable silicon photonic devices attract much research attention, and hybrid integration with tunable phase-change materials (PCMs) exhibiting large refractive index contrast between amorphous (Am) and crystalline (Cr) states is a promising way to achieve this goal. Here, we propose and numerically investigate a -Si hybrid waveguide Bragg filter operating in the telecom C-band on the silicon-on-insulator (SOI) platform. The proposed device consists of a Bragg grating (BG) with a thin top layer of ultralow-loss PCM interacting with evanescent field of the silicon waveguide mode. By harnessing the ultralow-loss and reversible index change of film, the spectral response of the hybrid BGs could be dynamically tuned. We also theoretically investigate the reversible phase transitions between Am and Cr states of film that could be attained by applying voltage pulses on the indium-tin-oxide (ITO) strip heater covered on film. Thermal simulations show that a 2 V (4.5 V) pulse with a duration of 400 ns (55 ns) applied to electric contacts would produce crystallization (or amorphization). The proposed structure may find great potential for on-chip phase tunable devices on a silicon platform.

Download full-text PDF

Source
http://dx.doi.org/10.1364/AO.451078DOI Listing

Publication Analysis

Top Keywords

silicon waveguide
8
waveguide bragg
8
bragg filter
8
reconfigurable hybrid
4
silicon
4
hybrid silicon
4
filter ultralow-loss
4
ultralow-loss phase-change
4
phase-change material
4
material reconfigurable
4

Similar Publications

Suspended Slot Membrane Waveguide Based on Germanium-on-Silicon-on-Insulator at λ = 4.23 µm for CO Monitoring.

Micromachines (Basel)

November 2024

Institute of Microelectronics and Optoelectronics, Warsaw University of Technology, Koszykowa 75, 00-662 Warsaw, Poland.

In this work, we propose a novel suspended slot membrane waveguide (SSMW) utilizing a germanium-on-silicon-on-insulator (Ge-on-SOI) platform for carbon dioxide (CO) gas-sensing applications. The design and analysis focus on the absorption line of CO in the mid-infrared region, specifically at a wavelength of 4.23 µm.

View Article and Find Full Text PDF

Ultra-large nonlinear parameters and all-optical modulation of a transition metal dichalcogenides on silicon waveguide.

Sci Rep

January 2025

MOE Key Laboratory of Laser Life Science, Institute of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou, 510631, China.

We integrate monolayer TMDCs into silicon-on-insulation (SOI) waveguides and dielectric-loaded surface plasmon polariton (DLSPP) waveguides to enhance nonlinear parameters (γ) of silicon-based waveguides. By optimizing the waveguide geometry, we have achieved significantly improved γ. In MoSe-on-SOI and MoSe-in-DLSPP waveguide with optimized geometry, the maximum γ at the excitonic resonant peak (λ) is 5001.

View Article and Find Full Text PDF

Silicon photonic MEMS switches based on split waveguide crossings.

Nat Commun

January 2025

State Key Laboratory of Extreme Photonics and Instrumentation, College of Optical Science and Engineering, Zhejiang University, Hangzhou, 310058, China.

The continuous push for high-performance photonic switches is one of the most crucial premises for the sustainable scaling of programmable and reconfigurable photonic circuits for a wide spectrum of applications. Conventional optical switches rely on the perturbative mechanisms of mode coupling or mode interference, resulting in inherent bottlenecks in their switching performance concerning size, power consumption and bandwidth. Here we propose and realize a silicon photonic 2×2 elementary switch based on a split waveguide crossing (SWX) consisting of two halves.

View Article and Find Full Text PDF

Versatile parallel signal processing with a scalable silicon photonic chip.

Nat Commun

January 2025

State Key Laboratory for Extreme Photonics and Instrumentation, Center for Optical & Electromagnetic Research, College of Optical Science and Engineering, International Research Center for Advanced Photonics (Haining), Zhejiang University, Hangzhou, China.

Silicon photonic signal processors promise a new generation of signal processing hardware with significant advancements in processing bandwidth, low power consumption, and minimal latency. Programmable silicon photonic signal processors, facilitated by tuning elements, can reduce hardware development cycles and costs. However, traditional programmable photonic signal processors based on optical switches face scalability and performance challenges due to control complexity and transmission losses.

View Article and Find Full Text PDF

Silicon photonics is a rapidly developing technology that promises to revolutionize the way we communicate, compute and sense the world. However, the lack of highly scalable, native complementary metal-oxide-semiconductor (CMOS)-integrated light sources is one of the main factors hampering its widespread adoption. Despite considerable progress in hybrid and heterogeneous integration of III-V light sources on silicon, monolithic integration by direct epitaxy of III-V materials remains the pinnacle of cost-effective on-chip light sources.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!