A frequent goal of chemical forensic analyses is to select a panel of diagnostic chemical features─colloquially termed a chemical fingerprint─that can predict the presence of a source in a novel sample. However, most of the developed chemical fingerprinting workflows are qualitative in nature. Herein, we report on a quantitative machine learning workflow. Grab samples ( = 51) were collected from five chemical sources, including agricultural runoff, headwaters, livestock manure, (sub)urban runoff, and municipal wastewater. Support vector classification was used to select the top 10, 25, 50, and 100 chemical features that best discriminate each source from all others. The cross-validation balanced accuracy was 92-100% for all sources ( = 1,000 iterations). When screening for diagnostic features from each source in samples collected from four local creeks, presence probabilities were low for all sources, except for wastewater at two downstream locations in a single creek. Upon closer investigation, a wastewater treatment facility was located ∼3 km upstream of the nearest sample location. In addition, using simulated in silico mixtures, the workflow can distinguish presence and absence of some sources at 10,000-fold dilutions. These results strongly suggest that this workflow can select diagnostic subsets of chemical features that can be used to quantitatively predict the presence/absence of various sources at trace levels in the environment.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.est.1c06655DOI Listing

Publication Analysis

Top Keywords

chemical
9
machine learning
8
chemical fingerprinting
8
samples collected
8
chemical features
8
sources
5
learning applications
4
applications chemical
4
fingerprinting environmental
4
source
4

Similar Publications

Multivalued logic (MVL) systems, in which data are processed with more than two logic values, are considered a viable solution for achieving superior processing efficiency with higher data density and less complicated system complexity without further scaling challenges. Such MVL systems have been conceptually realized by using negative transconductance (NTC) devices whose channels consist of van der Waals (vdW) heterojunctions of low-dimensional semiconductors; however, their circuit operations have not been quite ideal for driving multiple stages in real circuit applications due to reasons such as a reduced output swing and poorly defined logic states. Herein, we demonstrate ternary inverter circuits with near rail-to-rail swing and three distinct logic states by employing vdW p-n heterojunctions of single-walled carbon nanotubes (SWCNT) and MoS where the SWCNT layer completely covers the MoS layer.

View Article and Find Full Text PDF

The application of external electric fields to influence chemical reactions at electrode interfaces has attracted considerable interest in recent years. However, the design of electric fields to achieve highly efficient and selective catalytic systems, akin to the optimized fields found at enzyme active sites, remains a significant challenge. Consequently, there has been substantial effort in probing and understanding the interfacial electric fields at electrode/electrolyte interfaces and their effect on adsorbates.

View Article and Find Full Text PDF

Burns carry a large surface area, varying in shapes and depths, and an elevated risk of infection. Regardless of the underlying etiology, burns pose significant medical challenges and a high mortality rate. Given the limitations of current therapies, tissue-engineering-based treatments for burns are inevitable.

View Article and Find Full Text PDF

Determination of Site Occupancy in the M-Pd-Zn (M = Cu, Ag, and Au) γ-Brass Phase by CALculation of PHAse Diagrams Modeling and Rietveld Refinement.

Inorg Chem

January 2025

Department of Materials Science and Engineering, The Pennsylvania State University, University Park, Pennsylvania 16802, United States.

The Pd-Zn γ-brass phase provides exciting opportunities for synthesizing site-isolated catalysts with precisely controlled Pd active site ensembles. Introducing a third metallic element into the γ-brass lattice further perturbs the catalytic active site ensembles. Here, we introduce coinage metallic elements M (M = Cu, Ag, and Au) into the Pd-Zn γ-brass phase and investigate the site occupation factors of each element in the γ-brass lattice.

View Article and Find Full Text PDF

Photobiomodulation (PBM) is considered an effective and safe therapeutic modality in supporting the treatment of complications from a global pandemic-diabetes. In this study, PBM therapy is investigated to accelerate wound healing in diabetic mice (DM), under the combined biological effects of red light from a red organic light-emitting diode (ROLED) and near-infrared (NIR) light from an NIR conversion film (NCF) with dispersed CuInS/ZnS quantum dots (QDs). The QD concentration and the NCF structure were optimized to maximize the optical properties and mechanical stability.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!