AI Article Synopsis

  • Mutations in PRPF31, a critical protein in the spliceosomal tri-snRNP complex, lead to autosomal-dominant retinitis pigmentosa, a disease primarily affecting the retina despite PRPF31's widespread expression in the body.
  • Researchers used induced pluripotent stem cell (iPSC) technology to create retinal organoids and RPE models from patients with severe PRPF31-related RP, uncovering significant disruptions in RNA splicing and related cellular pathways.
  • The accumulation of cytoplasmic aggregates containing mutant PRPF31 and misfolded proteins causes splicing defects and cellular stress, but targeting the autophagy pathway can reduce these aggregates and improve cell survival.

Article Abstract

Introduction: Mutations in pre-mRNA processing factor 31 (PRPF31), a core protein of the spliceosomal tri-snRNP complex, cause autosomal-dominant retinitis pigmentosa (adRP). It has remained an enigma why mutations in ubiquitously expressed tri-snRNP proteins result in retina-specific disorders, and so far, the underlying mechanism of splicing factors-related RP is poorly understood.

Methods: We used the induced pluripotent stem cell (iPSC) technology to generate retinal organoids and RPE models from four patients with severe and very severe PRPF31-adRP, unaffected individuals and a CRISPR/Cas9 isogenic control.

Results: To fully assess the impacts of PRPF31 mutations, quantitative proteomics analyses of retinal organoids and RPE cells were carried out showing RNA splicing, autophagy and lysosome, unfolded protein response (UPR) and visual cycle-related pathways to be significantly affected. Strikingly, the patient-derived RPE and retinal cells were characterised by the presence of large amounts of cytoplasmic aggregates containing the mutant PRPF31 and misfolded, ubiquitin-conjugated proteins including key visual cycle and other RP-linked tri-snRNP proteins, which accumulated progressively with time. The mutant PRPF31 variant was not incorporated into splicing complexes, but reduction of PRPF31 wild-type levels led to tri-snRNP assembly defects in Cajal bodies of PRPF31 patient retinal cells, altered morphology of nuclear speckles and reduced formation of active spliceosomes giving rise to global splicing dysregulation. Moreover, the impaired waste disposal mechanisms further exacerbated aggregate formation, and targeting these by activating the autophagy pathway using Rapamycin reduced cytoplasmic aggregates, leading to improved cell survival.

Conclusions: Our data demonstrate that it is the progressive aggregate accumulation that overburdens the waste disposal machinery rather than direct PRPF31-initiated mis-splicing, and thus relieving the RPE cells from insoluble cytoplasmic aggregates presents a novel therapeutic strategy that can be combined with gene therapy studies to fully restore RPE and retinal cell function in PRPF31-adRP patients.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8926896PMC
http://dx.doi.org/10.1002/ctm2.759DOI Listing

Publication Analysis

Top Keywords

cytoplasmic aggregates
12
pluripotent stem
8
tri-snrnp proteins
8
retinal organoids
8
organoids rpe
8
rpe cells
8
rpe retinal
8
retinal cells
8
mutant prpf31
8
waste disposal
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!