Heterojunctions made by laterally stitching two different transition metal dichalcogenide monolayers create a unique one-dimensional boundary with intriguing local optical properties that can only be characterized by nanoscale-spatial-resolution spectral tools. Here, we use near-field photoluminescence (NF-PL) to reveal the narrowest region (105 nm) ever reported of photoluminescence quenching at the junction of a laterally stitched WS/MoS monolayer. We attribute this quenching to the atomically sharp band offset that generates a strong electric force at the junction to easily dissociate excitons. Besides the sharp heterojunction, a model considering various widths of the alloying interfacial region under low or high optical pumping is presented. With a spatial resolution six times better than that of confocal microscopy, NF-PL provides an unprecedented spectral tool for non-scalable 1D lateral heterojunctions.

Download full-text PDF

Source
http://dx.doi.org/10.1039/d2nr00216gDOI Listing

Publication Analysis

Top Keywords

quenching atomically
8
atomically sharp
8
lateral heterojunctions
8
near-field spectroscopic
4
spectroscopic imaging
4
imaging exciton
4
exciton quenching
4
sharp mos/ws
4
mos/ws lateral
4
heterojunctions heterojunctions
4

Similar Publications

Copper compounds with artificial metallo-nuclease (AMN) activity are mechanistically unique compared to established metallodrugs. Here, we describe the development of a new dinuclear copper AMN, Cu2-BPL-C6 (BPL-C6 = bis-1,10-phenanthroline-carbon-6), prepared using click chemistry that demonstrates site-specific DNA recognition with low micromolar cleavage activity. The BPL-C6 ligand was designed to force two redox-active copper centres-central for enhancing AMN activity-to bind DNA, via two phenanthroline ligands separated by an aliphatic linker.

View Article and Find Full Text PDF

Although the Rare Earth (RE)FeB type magnets were invented in the 1980s and are widely used worldwide. Yet, the phase formation and dissolution mechanisms are still not crystal clear. The reaction dynamics between rare earth elements (REE) and the iron-enriched matrix are essential to understanding the formation of hard magnetic REE-Fe-B phase or, conversely, phase dissociation and performance degeneration.

View Article and Find Full Text PDF

Due to the sulfur's atoms' propensity to form molecules and/or polymeric chains of various sizes and configuration, elemental sulfur possesses more allotropes and polymorphs than any other element at ambient conditions. This variability of the starting building blocks is partially responsible for its rich and fascinating phase diagram, with pressure and temperature changing the states of sulfur from insulating molecular rings and chains to semiconducting low- and high-density amorphous configurations to incommensurate superconducting metallic atomic phase. Here, using a fast compression technique, we demonstrate that the rapid pressurisation of liquid sulfur can effectively break the molecular ring structure, forming a glassy polymeric state of pure-chain molecules (Am-S).

View Article and Find Full Text PDF

The impact of halogen substitution quantities on the fluorescence intensity ratio of lanthanide Schiff base complexes.

Spectrochim Acta A Mol Biomol Spectrosc

December 2024

Department of Chemical Science and Technology, Kunming University, Kunming, Yunnan 650214, China. Electronic address:

The signal intensity ratio (SIR) is a crucial factor in advancing probe technology due to its direct impact on sensitivity and precision, particularly in applications such as medical imaging, environmental monitoring, and food safety testing. However, the development of high-SIR probes is challenged by complexities in fabrication, cost, and mechanical stability. In this study, we address these limitations by investigating the role of halogen atom substitutions in modulating the intermolecular binding energy and aggregation behavior of Ce-Salen Schiff base complexes.

View Article and Find Full Text PDF

Butyrylcholinesterase (BChE) plays a pivotal role in regulating acetylcholine (ACh) levels during the progression of Alzheimer's disease (AD), so emerged as an attractive target in AD treatment. Vasicine, a naturally occurring pyrroloquinazoline alkaloid, was identified as a natural BChE inhibitor (IC = 1.47 ± 0.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!