Nonlinear down-conversion in a single quantum dot.

Nat Commun

Paderborn University, Physics Department, Warburger Straße 100, 33098, Paderborn, Germany.

Published: March 2022

Tailored nanoscale quantum light sources, matching the specific needs of use cases, are crucial building blocks for photonic quantum technologies. Several different approaches to realize solid-state quantum emitters with high performance have been pursued and different concepts for energy tuning have been established. However, the properties of the emitted photons are always defined by the individual quantum emitter and can therefore not be controlled with full flexibility. Here we introduce an all-optical nonlinear method to tailor and control the single photon emission. We demonstrate a laser-controlled down-conversion process from an excited state of a semiconductor quantum three-level system. Based on this concept, we realize energy tuning and polarization control of the single photon emission with a control-laser field. Our results mark an important step towards tailored single photon emission from a photonic quantum system based on quantum optical principles.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8927346PMC
http://dx.doi.org/10.1038/s41467-022-28993-3DOI Listing

Publication Analysis

Top Keywords

single photon
12
photon emission
12
quantum
8
photonic quantum
8
energy tuning
8
control single
8
system based
8
nonlinear down-conversion
4
single
4
down-conversion single
4

Similar Publications

Development of Tc-Labeled Complexes with a Niraparib HYNIC Derivative for PARP-Positive Tumor Imaging.

Mol Pharm

January 2025

Key Laboratory of Radiopharmaceuticals of the Ministry of Education, NMPA Key Laboratory for Research and Evaluation of Radiopharmaceuticals (National Medical Products Administration), College of Chemistry, Beijing Normal University, Beijing 100875, P. R. China.

As an enzyme that plays an important role in DNA repair, poly(ADP-ribose) polymerase-1 (PARP-1) has become a popular target for cancer therapy. Nuclear medicine molecular imaging technology, supplemented by radiolabeled PARP-1 inhibitors, can accurately determine the expression level of PARP-1 at lesion sites to help patients choose an appropriate treatment plan. In this work, niraparib was modified with a hydrazinonicotinamide (HYNIC) group to generate the ligand NPBHYNIC, which has an affinity (IC) of 450.

View Article and Find Full Text PDF

Screened Ni single-cluster catalyst supported on graphidyne for high-performance electrocatalytic NO reduction to NH: A computational study.

J Colloid Interface Sci

January 2025

Key Laboratory of Photonic and Electronic Bandgap Materials, Ministry of Education, School of Physics and Electronic Engineering, College of Chemistry and Chemical Engineering, Harbin Normal University, Harbin 150025, China. Electronic address:

Electrocatalytic NO reduction (NORR) to NH represents a promising approach for converting hazardous NO waste gases into high-value NH products under ambient conditions. However, exploring stable, low-cost, and highly efficient catalysts to enhance the NO-to-NH conversion process remains a significant challenge. Herein, through systematic computational studies based on density functional theory (DFT), we rationally designed transition metal triatomic cluster supported on graphdiyne (TM/GDY) as potential single-cluster catalysts for high-performance NORR.

View Article and Find Full Text PDF

In this study, we present an unexplored approach for remote focus manipulation using 3D nanoprinted holograms integrated on the end face of multi-core single-mode fibers. This innovative method enables precise focus control within a monolithic metafiber device by allowing light coupled into any of the 37 cores to be precisely focused at predefined locations. Our approach demonstrates significant advances over conventional lenses and offers unique functionalities through computationally designed holograms.

View Article and Find Full Text PDF

Diatomic catalysts featuring a tunable structure and synergetic effects hold great promise for various reactions. However, their precise construction with specific configurations and diverse metal combinations is still challenging. Here, a selective etching and metal ion adsorption strategy is proposed to accurately assign a second metal atom (M) geminal to the single atom site (M-N) for constructing diatomic sites (e.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!