The development of nonlinear optical (NLO) materials has been hindered by competing microstructure requirements: the need to simultaneously engineer a large hyperpolarizability (a large second-harmonic generation (SHG)) and a wide HOMO-LUMO gap (a wide band gap). Herein, a non-centrosymmetric transition-metal (TM) oxyfluoride K (NbOF )(NbF ) (KNOF) with an extremely high F/O ratio is constructed in high yield. KNOF exhibits an extremely wide band gap (5.88 eV) and a strong powder SHG response (4.0×KH PO )-both being the largest values for TM-centered oxyfluorides-as well as a birefringence sufficient for applications. The dominant roles of the partially fluorinated [NbO F ] and totally fluorinated [NbF ] groups in achieving the enlarged band gap in KNOF have been clarified by first-principles calculations. Our results suggest that maximizing the fluorine content of oxyfluorides may unlock the promise of short-wavelength-transparent materials with exceptional NLO performance.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/anie.202203104 | DOI Listing |
Nanoscale
January 2025
Physics Department E20, School of Natural Sciences, Technical University of Munich, Garching, 85748, Germany.
-Armchair graphene nanoribbons (nAGNRs) are promising components for next-generation nanoelectronics due to their controllable band gap, which depends on their width and edge structure. Using non-metal surfaces for fabricating nAGNRs gives access to reliable information on their electronic properties. We investigated the influence of light and iron adatoms on the debromination of 4,4''-dibromo--terphenyl precursors affording poly(-phenylene) (PPP as the narrowest GNR) wires through the Ullmann coupling reaction on a rutile TiO(110) surface, which we studied by scanning tunneling microscopy and X-ray photoemission spectroscopy.
View Article and Find Full Text PDFNanoscale
January 2025
Theory of Condensed Matter Group, Cavendish Laboratory, University of Cambridge, J.J.Thomson Avenue, Cambridge CB3 0HE, UK.
Benefiting from improved stability due to interlayer van der Waals interactions, few-layer fullerene networks are experimentally more accessible compared to monolayer polymeric C. However, there is a lack of systematic theoretical studies on the material properties of few-layer C networks. Here, we compare the structural, electronic and optical properties of bilayer and monolayer fullerene networks.
View Article and Find Full Text PDFPhys Chem Chem Phys
January 2025
Shanxi Coal International Energy Group Co., Ltd., Taiyuan 030000, China.
Photocatalytic reduction of CO will play a major role in future energy and environmental crisis. To investigate the adsorption mechanisms of CO and HO molecules involved in the catalytic process on the surface of anatase titanium dioxide 101 (TiO(101)) and the influence of Au atom doping on their adsorption, first-principles density functional theory calculations were used. The results show that 1.
View Article and Find Full Text PDFLangmuir
January 2025
School of Physics, East China University of Science and Technology, Shanghai 200237, China.
Black phosphorus (BP), a promising two-dimensional material, faces significant challenges for its applications due to its instability in air and water. Herein, molecular dynamics simulations reveal that a self-assembled ferrocene (FeCp) molecular layer can form on BP surfaces and remain stable in aqueous environments, predicting its effectiveness for passivation. This theoretical finding is corroborated by X-ray photoelectron spectroscopy, Fourier-transform infrared spectroscopy, Raman spectroscopy, and optical microscopy observations.
View Article and Find Full Text PDFTheranostics
January 2025
Departments of Radiology, Washington University in St. Louis, MO 63110, USA.
Cancer remains a leading cause of mortality, with aggressive, treatment-resistant tumors posing significant challenges. Current combination therapies and imaging approaches often fail due to disparate pharmacokinetics and difficulties correlating drug delivery with therapeutic response. In this study, we developed radionuclide-activatable theranostic nanoparticles (NPs) comprising folate receptor-targeted bimetallic organo-nanoparticles (Gd-Ti-FA-TA NPs).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!