Nowadays, the true economic and nutritional value of food is underpinned by both origin and quality traits, more often expressed as increased quality benefits derived from the origin source. Gut microbiota contribute to food metabolism and host health, therefore, it may be suitable as a qualifying indicator of origin and quality of economic species. Here, we investigated relationships between the gut microbiota of the sea cucumber (Apostichopus japonicus), a valuable aquaculture species in Asia, with their origins and quality metrics. Based on data from 287 intestinal samples, we generated the first biogeographical patterns for A. japonicus gut microbiota from origins across China. Importantly, A. japonicus origins were predicted using the random forest model that was constructed using 20 key gut bacterial genera, with 97.6% accuracy. Furthermore, quality traits such as saponin, fat and taurine were also successfully predicted by random forest models based on gut microbiota, with approximately 80% consistency between predicted and true values. We showed that substantial variations existed in the gut microbiota and quality variables in A. japonicus across different origins, and we also demonstrated the great potential of gut microbiota to track A. japonicus origins and predict their quality traits.

Download full-text PDF

Source
http://dx.doi.org/10.1111/1462-2920.15972DOI Listing

Publication Analysis

Top Keywords

gut microbiota
28
quality traits
16
japonicus origins
12
quality
8
origins quality
8
origin quality
8
predicted random
8
random forest
8
microbiota
7
gut
7

Similar Publications

Indole-3-propionic acid (IPA), a metabolite produced by gut microbiota through tryptophan metabolism, has recently been identified as playing a pivotal role in bone metabolism. IPA promotes osteoblast differentiation by upregulating mitochondrial transcription factor A (Tfam), contributing to increased bone density and supporting bone repair. Simultaneously, it inhibits the formation and activity of osteoclasts, reducing bone resorption, possibly through modulation of the nuclear factor-κB (NF-κB) pathway and downregulation of osteoclast-associated factors, thereby maintaining bone structural integrity.

View Article and Find Full Text PDF

Severe acute pancreatitis (SAP) is one of the leading causes of hospital admissions for gastrointestinal diseases, with a rising incidence worldwide. Intestinal microbiota dysbiosis caused by SAP exacerbates systemic inflammatory response syndrome and organ dysfunction. Fecal microbiota transplantation (FMT) has emerged as a promising therapeutic option for gastrointestinal diseases.

View Article and Find Full Text PDF

There is a complex interplay between the gut microbes, liver, and central nervous system, a gut-liver-brain axis, where the brain impacts intestinal and hepatic function while the gut and liver can impact cognition and mental status. Dysregulation of this axis can be seen in numerous diseases. Hepatic encephalopathy, a consequence of cirrhosis, is perhaps the best studied perturbation of this system.

View Article and Find Full Text PDF

α-Cyclodextrin (αCD), a cyclic hexasaccharide composed of six glucose units, is not digested in the small intestine but is completely fermented by gut microbes. Recently, we have reported that αCD supplementation for nonathlete men improved their 10 km biking times. However, the beneficial effects of αCD on exercise are not yet fully understood.

View Article and Find Full Text PDF

Verification of an alteration in the gut microbiota that increases nutritional risk in patients on hemodialysis.

Biosci Microbiota Food Health

July 2024

Department of Gastroenterological and Transplant Surgery, Graduate School of Biomedical and Health Science, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima 734-8551, Japan.

In end-stage kidney disease requiring hemodialysis, patients at nutritional risk have a poor prognosis. The gut microbiota is important for maintaining the nutritional status of patients. However, it remains unclear whether an altered gut microbiota correlates with increased nutritional risk in patients undergoing hemodialysis.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!