Nicotine plays a role in inhibiting inflammatory factors, which contributes to improving cognitive impairment by activating αβ nAChRs in ischemic rats, but the underlying mechanism has not been fully elucidated. Janus tyrosine kinase 2-signal transducer and activator of transcription 3 (JAK2-STAT3) signaling pathway is involved in cognitive improvement, and there seems to be a relationship between nAChRs and JAK2-STAT3 as well. The aim of this study is to explore the role of JAK2-STAT3 signaling pathway in nicotine-mediated anti-inflammatory effect. Nicotine, DHβE (the strongest competitive antagonist of αβ nAChRs), and AG490 (a specific JAK2-STAT3 blocker) were used to intervene and treat ischemic rats and HEK-293 T-hαβ cells. The Morris water maze (MWM) test and 2-[F]-A-85380 PET imaging were performed to detect the cognitive function and αβ nAChRs density in ischemic rats. The results demonstrated that nicotine intervention increased the density of αβ nAChRs and improved cognitive impairment, but this effect was blocked by AG490, and the receptors were still upregulated. Essentially, when the JAK2-STAT3 signaling pathway was blocked, nicotine could only upregulate the expression of αβ nAChRs, but not improve the cognitive function. PCR and Western blot analysis further confirmed these results. The cell experiments also showed that nicotine could reduce inflammatory factors stimulated by LPS and upregulate the expression of pJAK2 and pSTAT3 in HEK-293 T-hαβ cells, while AG490 and DHβE reversed the effect of nicotine. To sum up, our work indicated that JAK2-STAT3 signaling pathway played an important role in nicotine-induced cognitive improvement by upregulating αβ nAChRs in ischemic rats.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s12035-022-02797-4DOI Listing

Publication Analysis

Top Keywords

αβ nachrs
24
jak2-stat3 signaling
20
signaling pathway
20
ischemic rats
20
activating αβ
8
inflammatory factors
8
cognitive impairment
8
nachrs ischemic
8
cognitive improvement
8
hek-293 t-hαβ cells
8

Similar Publications

A new series of benzo[h]quinoline-containing heterocycles was synthesized via reactions of benzo[h]quinolinyl-2(3H)-furanone with some nitrogen bidentate nucleophiles, leading to the formation of pyridazinone, pyrrolinone, benzimidazole, and benzoxazinone derivatives. The synthesized compounds were evaluated for their insecticidal activity against Culex pipiens L. larvae.

View Article and Find Full Text PDF

Terminal Schwann cells (TSCs) are capable of regulating acetylcholine (ACh) release at the neuromuscular junction (NMJ). We have identified GABA as a gliotransmitter at mouse NMJs. When ACh activates α7 nicotinic ACh receptor (nAChRs) on TSCs, GABA is released and activates GABA receptors on the nerve terminal that subsequently reduce ACh release.

View Article and Find Full Text PDF

Purpose: After peripheral nerve injury (PNI), prolonged denervation of the target muscle prevents adequate reinnervation even if the nerve is repaired. The aim of this work is to analyze the effect of intramuscular Platelet-Rich Plasma (PRP) in a denervated muscle due to PNI.Materials and.

View Article and Find Full Text PDF

Botulinum neurotoxin type-A (BoNT/A), which blocks quantal acetylcholine (ACh) release at the neuromuscular junction (NMJ), has demonstrated its efficacy in the symptomatic treatment of blepharospasm. In 3.89% of patients treated for blepharospasm at Tenon Hospital, BoNT/A was no longer effective in relieving the patient's symptoms, and a partial upper myectomy of the muscle was performed.

View Article and Find Full Text PDF

Adaptive remodeling of rat adrenomedullary stimulus-secretion coupling in a chronic hypertensive environment.

Cell Mol Life Sci

December 2024

Univ Angers, INSERM, CNRS, MITOVASC, Équipe CARME, SFR ICAT, F-49000 Angers, France.

Chronic elevated blood pressure impinges on the functioning of multiple organs and therefore harms body homeostasis. Elucidating the protective mechanisms whereby the organism copes with sustained or repetitive blood pressure rises is therefore a topical challenge. Here we address this issue in the adrenal medulla, the master neuroendocrine tissue involved in the secretion of catecholamines, influential hormones in blood pressure regulation.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!