Background: In colorectal cancer (CRC), the consensus molecular subtype 4 (CMS4) is associated with therapy resistance and poor prognosis. Clinical diagnosis of CMS4 is hampered by locoregional and temporal variables influencing CMS classification. Diagnostic tools that comprehensively detect CMS4 are therefore urgently needed.

Methods: To identify targets for molecular CMS4 imaging, RNA sequencing data of 3232 primary CRC patients were explored. Heterogeneity of marker expression in relation to CMS4 status was assessed by analysing 3-5 tumour regions and 91.103 single-tumour cells (7 and 29 tumours, respectively). Candidate marker expression was validated in CMS4 peritoneal metastases (PM; n = 59). Molecular imaging was performed using the Ga-DOTA-FAPI-46 PET tracer.

Results: Fibroblast activation protein (FAP) mRNA identified CMS4 with very high sensitivity and specificity (AUROC > 0.91), and was associated with significantly shorter relapse-free survival (P = 0.0038). Heterogeneous expression of FAP among and within tumour lesions correlated with CMS4 heterogeneity (AUROC = 1.00). FAP expression was homogeneously high in PM, a near-homogeneous CMS4 entity. FAPI-PET identified focal and diffuse PM that were missed using conventional imaging. Extra-peritoneal metastases displayed extensive heterogeneity of tracer uptake.

Conclusion: FAP expression identifies CMS4 CRC. FAPI-PET may have value in the comprehensive detection of CMS4 tumours in CRC. This is especially relevant in patients with PM, for whom effective imaging tools are currently lacking.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9276750PMC
http://dx.doi.org/10.1038/s41416-022-01748-zDOI Listing

Publication Analysis

Top Keywords

cms4
11
fibroblast activation
8
activation protein
8
consensus molecular
8
molecular subtype
8
colorectal cancer
8
marker expression
8
fap expression
8
imaging
5
expression
5

Similar Publications

Cancer-associated fibroblasts (CAFs) significantly influence tumor progression and therapeutic resistance in colorectal cancer (CRC). However, the distributions and functions of CAF subpopulations vary across the four consensus molecular subtypes (CMSs) of CRC. This study performed single-cell RNA and bulk RNA sequencing and revealed that myofibroblast-like CAFs (myCAFs), tumor-like CAFs (tCAFs), inflammatory CAFs (iCAFs), CXCL14CAFs, and MTCAFs are notably enriched in CMS4 compared with other CMSs of CRC.

View Article and Find Full Text PDF

Enterocyte-like differentiation defines metabolic gene signatures of CMS3 colorectal cancers and provides therapeutic vulnerability.

Nat Commun

January 2025

Laboratory for Experimental Oncology and Radiobiology, Center for Experimental and Molecular Medicine, Cancer Center Amsterdam, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands.

Colorectal cancer (CRC) is stratified into four consensus molecular subtypes (CMS1-4). CMS3 represents the metabolic subtype, but its wiring remains largely undefined. To identify the underlying tumorigenesis of CMS3, organoids derived from 16 genetically engineered mouse models are analyzed.

View Article and Find Full Text PDF

Background: Metastatic colorectal cancer (mCRC) is the main cause of CRC mortality, with limited treatment options. Although immunotherapy has benefited some cancer patients, mCRC typically lacks the molecular features that respond to this treatment. However, recent studies indicate that the immune microenvironment of mCRC may be modified to enhance the effect of immune checkpoint inhibitors.

View Article and Find Full Text PDF

Colorectal cancer (CRC) is a significant contributor to cancer-related mortality, emphasizing the need for advanced biomarkers to guide treatment. As part of an international consortium, we previously categorized CRCs into four consensus molecular subtypes (CMS1-CMS4), showing promise for outcome prediction. To facilitate clinical integration of CMS classification in settings where formalin-fixed paraffin-embedded (FFPE) samples are routinely used, we developed NanoCMSer, a NanoString-based CMS classifier using 55 genes.

View Article and Find Full Text PDF

The biological heterogeneity of colorectal cancer makes its molecular characteristics essential for therapeutic decision-making and prognostic evaluation. Recent advancements in consensus molecular subtyping, based on gene expression profiling, have provided deeper insights into the heterogeneity of CRC. CMS1, known as the immune subtype, is characterized by robust immune activity and microsatellite instability.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!