Following the identification of the Omicron variant of the SARS-CoV-2 virus in late November 2021, governments worldwide took actions intended to minimise the impact of the new variant within their borders. Despite guidance from the WHO advising a risk-based approach, many rapidly implemented stringent policies focused on travel restrictions. In this paper, we capture 221 national-level travel policies issued during the 3 weeks following publicisation of the Omicron variant. We characterise policies based on whether they target travellers from specific countries or focus more broadly on enhanced screening, and explore differences in approaches at the regional level. We find that initial reactions almost universally focused on entry bans and flight suspensions from Southern Africa, and that policies continued to target travel from these countries even after community transmission of the Omicron variant was detected elsewhere in the world. While layered testing and quarantine requirements were implemented by some countries later in this 3-week period, these enhanced screening policies were rarely the first response. The timing and conditionality of quarantine and testing requirements were not coordinated between countries or regions, creating logistical complications and burdening travellers with costs. Overall, response measures were rarely tied to specific criteria or adapted to match the unique epidemiology of the new variant.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8928247 | PMC |
http://dx.doi.org/10.1136/bmjgh-2022-008642 | DOI Listing |
PLoS Pathog
January 2025
Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America.
SARS-CoV-2 continues to transmit and evolve in humans and animals. White-tailed deer (Odocoileus virginianus) have been previously identified as a zoonotic reservoir for SARS-CoV-2 with high rates of infection and probable spillback into humans. Here we report sampling 1,127 white-tailed deer (WTD) in Pennsylvania, and a genomic analysis of viral dynamics spanning 1,017 days between April 2021 and January 2024.
View Article and Find Full Text PDFVaccines (Basel)
January 2025
Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA.
Background/objectives: COVID-19 vaccines effectively prevent severe disease, but unequal distribution, especially in low- and middle-income countries, has led to vaccine-resistant strains. This highlights the urgent need for alternative vaccine platforms that are safe, thermostable, and easy to distribute. This study evaluates the immunogenicity, stability, and scalability of a dissolved microneedle array patch (MAP) delivering the rS1RS09 subunit vaccine, comprising the SARS-CoV-2 S1 monomer and RS09, a TLR-4 agonist peptide.
View Article and Find Full Text PDFBiosensors (Basel)
January 2025
Institute of Biological Information Processing, Bioelectronics (IBI-3), Forschungszentrum Jülich GmbH, 52428 Jülich, Germany.
With the goal of fast and accurate diagnosis of infectious diseases, this study presents a novel electrochemical biosensor that employs a refined aptamer (C9t) for the detection of spike (S) protein SARS-CoV-2 variants in a flexible multielectrode aptasensor array with PoC capabilities. Two aptamer modifications were employed: removing the primer binding sites and including two dithiol phosphoramidite anchor molecules. Thus, reducing fabrication time from 24 to 3 h and increasing the stability and sparseness for multi-thiol aptasensors compared to a standard aptasensor using single thiols, without a reduction in aptamer density.
View Article and Find Full Text PDFFront Transplant
January 2025
Section of Transplant Surgery, Washington University School of Medicine, St. Louis, MO, United States.
Background: COVID-19 disease burden has been mitigated by vaccination; however, concerns persist regarding weakened immune responses in liver transplant (LT) recipients. This study investigates COVID-19 outcomes in LT recipients based on vaccination status.
Methods: This single-center retrospective study identified LT recipients with PCR-confirmed COVID-19 infection from 03/01/2020 to 07/31/2023.
BackgroundThe potential impact of urban structure, as population density and proximity to essential facilities, on spatial variability of infectious disease cases remains underexplored.AimTo analyse the spatial variation of COVID-19 case intensity in relation to population density and distance from urban facilities (as potential contagion hubs), by comparing Alpha and Omicron wave data representing periods of both enacted and lifted non-pharmaceutical interventions (NPIs) in Málaga.MethodsUsing spatial point pattern analysis, we examined COVID-19 cases in relation to population density, distance from hospitals, health centres, schools, markets, shopping malls, sports centres and nursing homes by non-parametric estimation of relative intensity dependence on these covariates.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!