Background: Respectively, prostate cancer (PCa) and breast cancer (BC) are the second most and most commonly diagnosed cancer in men and women, and they account for a majority of cancer-related deaths world-wide. Cancer cells typically exhibit much-facilitated growth that necessitates upregulated glycolysis and augmented amino acid metabolism, that of glutamine and aspartate in particular, which is tightly coupled with an increased flux of the tricarboxylic acid (TCA) cycle. Epidemiological studies have exploited metabolomics to explore the etiology and found potentially effective biomarkers for early detection or progression of prostate and breast cancers. However, large randomized controlled trials (RCTs) to establish causal associations between amino acid metabolism and prostate and breast cancers have not been reported.
Objective: Utilizing two-sample Mendelian randomization (MR), we aimed to estimate how genetically predicted glutamate and aspartate levels could impact upon prostate and breast cancers development.
Methods: Single nucleotide polymorphisms (SNPs) as instrumental variables (IVs), associated with the serum levels of glutamate and aspartate were extracted from the publicly available genome-wide association studies (GWASs), which were conducted to associate genetic variations with blood metabolite levels using comprehensive metabolite profiling in 1,960 adults; and the glutamate and aspartate we have chosen were two of 644 metabolites. The summary statistics for the largest and latest GWAS datasets for prostate cancer (61,106 controls and 79,148 cases) were from the Prostate Cancer Association Group to Investigate Cancer Associated Alterations in the Genome (PRACTICAL) consortium, and datasets for breast cancer (113,789 controls and 133,384 cases) were from Breast Cancer Association Consortium (BCAC). The study was performed through two-sample MR method.
Results: Causal estimates were expressed as odds ratios (OR) and 95% confidence interval (CI) per standard deviation increment in serum level of aspartate or glutamate. Aspartate was positively associated with prostate cancer (Effect = 1.043; 95% confidence interval, 1.003 to 1.084; P = 0.034) and breast cancer (Effect = 1.033; 95% confidence interval, 1.004 to 1.063; P = 0.028); however, glutamate was neither associated with prostate cancer nor with breast cancer. The potential causal associations were robust to the sensitivity analysis.
Conclusions: Our study found that the level of serum aspartate could serve as a risk factor that contributed to the development of prostate and breast cancers. Efforts on a detailed description of the underlying biochemical mechanisms would be extremely valuable in early assessment and/or diagnosis, and strategizing clinical intervention, of both cancers.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8925075 | PMC |
http://dx.doi.org/10.1186/s12864-022-08442-7 | DOI Listing |
Cell Mol Biol (Noisy-le-grand)
January 2025
Al Door Technical Institute, Northern Technical University, Mosul, Iraq.
Prostate cancer is the most common type after the age of fifty. It affects males and affects the prostate gland, which protects the function of sperm by producing semen. The current study was designed to evaluate prostate cancer infection effects on some biomarkers such as irisin, Tumor necrosis factor-TNF-α, prostate acid phosphates -PAP, Glutathione-GSH, malondialdehyde-MDA, urea, and creatinine.
View Article and Find Full Text PDFCell Mol Biol (Noisy-le-grand)
January 2025
Departamento de Biología Molecular y Genómica y Departamento de Disciplinas Filosófico Metodológicas e Instrumentales. Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara, Jalisco, México.
ABCG2 transporter protein is one of several markers of prostate cancer stem cells (PCSCs). Gene variants of ABCG2 could affect protein expression, function, or both. The aim of this study was to identify the genetic variability of the ABCG2 gene in Mexican patients with prostate cancer.
View Article and Find Full Text PDFJ Cell Mol Med
January 2025
Department of Medical Biology, Faculty of Medicine, Kutahya Health Sciences University, Kutahya, Turkey.
Chemotherapy is a potent tool against cancer, but drug resistance remains a major obstacle. To combat this, understanding the molecular mechanisms behind resistance in cancer cells and the protein expression changes driving these mechanisms is crucial. Targeting the Ubiquitin-Proteasome System (UPS) has proven effective in treating multiple myeloma and shows promise for solid tumours.
View Article and Find Full Text PDFEur Urol
January 2025
Eastern Health Clinical School, Monash University, Melbourne, Australia; Cancer Services, Eastern Health, Melbourne, Australia; Biomedicine Discovery Institute Cancer Program, Prostate Cancer Research Group, Department of Anatomy and Developmental Biology, Monash University, Melbourne, Australia.
Eur Urol
January 2025
Unit of Urology/Division of Oncology, Gianfranco Soldera Prostate Cancer Lab, IRCCS San Raffaele Scientific Institute, Milan, Italy; "Vita-Salute" San Raffaele University, Milan, Italy.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!