PRR-Mediated Immune Response and Intestinal Flora Profile in Soybean Meal-Induced Enteritis of Pearl Gentian Groupers, ♀ × ♂.

Front Immunol

Key Laboratory of Aquatic, Livestock and Poultry Feed Science and Technology in South China, Ministry of Agriculture, Zhanjiang, China.

Published: May 2022

Pattern recognition receptors (PRRs) can recognize microbial-specific pathogen-associated molecular patterns, initiate signal cascade transduction, activate the expressions of host immunity and proinflammatory genes, and, ultimately, trigger an immune response against identified pathogens. The present study focused on two outcomes of feeding pearl gentian groupers with high levels of soybean meal (SBM): (1) growth performance and (2) the intestinal environment, including tissue structure, flora profile, and immune responses. Some 720 groupers were randomly divided into three groups ( = 4): (1) controls, fed a 50% fish meal feed (FM), (2) with 20% of the FM substituted with SBM (SBM20), and (3) 40% of the FM substituted with SBM (SBM40). The fish were fed these iso-nitrogenous and iso-lipidic diets for 10 weeks. They were kept in containers with 1 m of water under natural light and temperature levels. The experimental results demonstrate that the SBM diets significantly degraded growth performance and intestinal physiology. Typical enteritis characteristics and immune fluctuations appeared, as reflected by the enzyme activities of total superoxide dismutase and lysozyme, and the contents of immunoglobulin M, complement 3, and complement 4. 16SrDNA high-throughput sequencing showed that the intestinal flora was significantly affected, with the abundance of harmful bacteria, such as and , increasing with dietary SBM level. Based on "3 + 2" full-length transcriptome sequencing, three triggered PRRs were found in the intestine: the RIG-like receptor, NOD-like receptor, and Toll-like receptor signaling pathways. The intestinal flora variations were significantly correlated with the activation of the three PRR signaling pathways by canonical correlation analysis. These culminated in the transcriptome activation of NF-κB, IRFs, and costimulatory molecules, ultimately promoting the expressions of proinflammatory cytokines, interferons (IFNs), chemokines, and other molecules vital to the innate and/or adaptive immune responses. This study provides new information for diagnosing and preventing SBMIE in aquaculture fish.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8919722PMC
http://dx.doi.org/10.3389/fimmu.2022.814479DOI Listing

Publication Analysis

Top Keywords

intestinal flora
12
immune response
8
flora profile
8
pearl gentian
8
gentian groupers
8
growth performance
8
performance intestinal
8
immune responses
8
substituted sbm
8
signaling pathways
8

Similar Publications

Disrupted microbial cross-feeding and altered L-phenylalanine consumption in people living with HIV.

Brief Bioinform

March 2025

Division of Microbiology, Tulane National Primate Research Center, Tulane University, Covington, LA 70433, United States.

This work aims to (1) identify microbial and metabolic alterations and (2) reveal a shift in phenylalanine production-consumption equilibrium in individuals with HIV. We conducted extensive searches in multiple databases [MEDLINE, Web of Science (including Cell Press, Oxford, HighWire, Science Direct, IOS Press, Springer Nature, PNAS, and Wiley), Google Scholar, and Embase] and selected two case-control 16S data sets (GenBank IDs: SRP039076 and EBI ID: ERP003611) for analysis. We assessed alpha and beta diversity, performed univariate tests on genus-level relative abundances, and identified significant microbiome features using random forest.

View Article and Find Full Text PDF

In the last decade, it has been discovered that intestinal flora can affect various organ-specific cancers by altering the body's energy balance, synthesizing genetic toxins and small signaling molecules, and initiating and modulating immune responses. In this review, we will focus on elucidating the role of intestinal flora based on its molecular mechanisms and its possible impact on head and neck cancers in the near future, and explore how it may be a novel approach to treating head and neck cancers in the future.

View Article and Find Full Text PDF

The crisis of metabolic and mental disorders continues to escalate worldwide. A growing body of research highlights the influence of tryptophan and its metabolites, such as serotonin, beyond their traditional roles in neural signaling. Serotonin acts as a key neurotransmitter within the brain-gut-microbiome axis, a critical bidirectional communication network affecting both metabolism and behavior.

View Article and Find Full Text PDF

An association between gut microbiota and the development of pancreatic ductal adenocarcinoma (PDAC) has been previously described. To better understand the bacterial microbiota changes accompanying PDAC promotion and progression stimulated by inflammation and fecal microbiota transplantation (FMT), we investigated stool and pancreatic microbiota by 16s RNA-based metagenomic analysis in mice with inducible acinar transgenic expressions of KrasG12D, and age- and sex-matched control mice that were exposed to inflammatory stimuli and fecal microbiota obtained from mice with PDAC. Time- and inflammatory-dependent stool and pancreatic bacterial composition alterations and stool alpha microbiota diversity reduction were observed only in mice with a Kras mutation that developed advanced pancreatic changes.

View Article and Find Full Text PDF

Colorectal cancer (CRC) is a major contributor to global cancer-related mortality with increasing incidence rates in both developed and developing regions. Therefore, CRC presents a significant challenge to global health. The development of innovative tools for enhancing early CRC screening and diagnosis, along with novel treatments and therapies for improved management, remains an urgent necessity.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!