Introduction: Obesity has been believed to be closely linked with many kinds of diseases including atherosclerosis, hypertension, cerebrovascular thrombosis, and diabetes. Ghrelin and Homeobox transcript antisense RNA (HOTAIR) were believed to be involved in the regulation of myocardial injury.

Methods: The obesity mice model was established through feeding mice (C57BL/6J, male, eight-week-old) with high-fat diet and palmitate (PA)-induced cardiomyocyte injury. RNA and protein levels were detected with Quantitative real-time PCR and Western blotting. The levels of TG, TCH, LDL, CK-MB, cTnl, and BNP in the serum or cell medium supernatant were measured using ELISA kits. The ROS level was detected with the DCFH-DA method. Binding sites between different targets were identified using detection of dual luciferase reporter assay. Cell apoptosis was analyzed by flow cytometry. RNA-binding protein immunoprecipitation and chromatin immunoprecipitation were used to detect the binding of DNMT3B with HOTAIR or miR-196b promoter.

Results: The expression of HOTAIR was downregulated, and miR-196b was upregulated in the obese myocardial injury. Ghrelin attenuated PA-induced cardiomyocyte injury by increasing HOTAIR. HOTAIR regulated the expression of miR-196b by recruiting DNMT3B to induce methylation of the miR-196b gene promoter. The binding site between miR-196b and IGF-1 was identified.

Discussion/conclusion: We demonstrated that ghrelin attenuated PA-induced cardiomyocyte injury by regulating the HOTAIR/miR-196b/IGF-1 signaling pathway. Our findings might provide novel thought for the prevention and treatment of obesity-induced myocardial injury by targeting HOTAIR/miR-196b.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9421679PMC
http://dx.doi.org/10.1159/000523870DOI Listing

Publication Analysis

Top Keywords

myocardial injury
12
pa-induced cardiomyocyte
12
cardiomyocyte injury
12
obesity-induced myocardial
8
injury regulating
8
ghrelin attenuated
8
attenuated pa-induced
8
injury
6
mir-196b
6
hotair
6

Similar Publications

CircRNA CDR1AS promotes cardiac ischemia-reperfusion injury in mice by triggering cardiomyocyte autosis.

J Mol Med (Berl)

January 2025

Cardiovascular Surgery Department of The First Affiliated Hospital of Harbin Medical University, and Pharmacology Department of Pharmacy College of Harbin Medical University, Harbin, 150081, China.

Myocardial ischemia/reperfusion (IR) injury is a common adverse event in the clinical treatment of myocardial ischemic disease. Autosis is a form of cell death that occurs when autophagy is excessive in cells, and it has been associated with cardiac IR damage. This study aimed to investigate the regulatory mechanism of circRNA CDR1AS on autosis in cardiomyocytes under IR.

View Article and Find Full Text PDF

Puerarin pretreatment provides protection against myocardial ischemia/reperfusion injury via inhibiting excessive autophagy and apoptosis by modulation of HES1.

Sci Rep

January 2025

Department of Cardiovascular Surgery, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, 17 Yongwai Road, Nanchang, 330006, Jiangxi, China.

The study aimed to elucidate the underlying pharmacological mechanism of the traditional Chinese medicine Pue in ameliorating myocardial ischemia-reperfusion injury (MIRI), a critical clinical challenge exacerbated by reperfusion therapy. In vivo MIRI and in vitro anoxia/reoxygenation (A/R) models were constructed. The results demonstrated that Pue pretreatment effectively alleviated MIRI, as manifested by diminishing the levels of serum CK-MB and LDH, mitigating the extent of myocardial infarction and enhancing cardiac functionality.

View Article and Find Full Text PDF

Doxorubicin, a representative drug of the anthracycline class, is widely used in cancer treatment. However, Doxorubicin-induced cardiotoxicity (DIC) presents a significant challenge in its clinical application. Mitochondrial dysfunction plays a central role in DIC, primarily through disrupting mitochondrial dynamics.

View Article and Find Full Text PDF

Purpose: We sought to investigate the expression of MALAT1, plasma brain natriuretic peptide, and Tei index in sepsis-induced myocardial injury.

Methods: The current retrospective analysis focused on 146 sepsis patients admitted to our hospital from February 2021 to March 2023. Based on the presence or absence of myocardial injury, the patients were divided into two groups: the sepsis group (n = 80) and the sepsis-induced myocardial injury group (n = 66).

View Article and Find Full Text PDF

Long non-coding RNA XR008038 promotes the myocardial ischemia/reperfusion injury development through increasing the expressions of galectin-3.

Int J Cardiol

January 2025

Department of Intensive Care Unit, Hangzhou Hospital of Traditional Chinese Medicine (Dingqiao District), Guangxing Affiliated Hospital of Zhejiang Chinese Medical University, No.453 Tiyuchang Road, Hangzhou, Zhejiang 310013, China. Electronic address:

Background: Myocardial ischemia/reperfusion (I/R) injury is a common pathophysiological change after myocardial reperfusion therapy. Recent research confirmed that long non-coding RNA (IncRNAs) played an important role in many cardiovascular diseases. This study was carried out to explore the role of lncRNA XR008038 in the I/R progression.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!