Mitochondrial function, a key indicator of cell health, can be assessed through monitoring changes in mitochondrial membrane potential (MMP). Cationic fluorescent dyes are commonly used tools to assess MMP. We used a water-soluble mitochondrial membrane potential indicator (m-MPI) to detect changes in MMP in various types of cells, such as HepG2, HepaRG, and AC16 cells. A homogenous cell-based MMP assay has been optimized and performed in a 1536-well plate format, which can be used to screen several compound libraries for mitochondrial toxicity by evaluating the effects of chemical compounds on MMP.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9850828 | PMC |
http://dx.doi.org/10.1007/978-1-0716-2213-1_2 | DOI Listing |
Hypertension, a major cause of cardiomyopathy, is one of the most critical risk factors for heart failure and mortality worldwide. Loss of metabolic flexibility of cardiomyocytes is one of the major causes of heart failure. Although Catestatin (CST) treatment is known to be both hypotensive and cardioprotective, its effect on cardiac metabolism is unknown.
View Article and Find Full Text PDFBio Protoc
January 2025
Key Laboratory of Analytical Science and Technology of Hebei Province, College of Chemistry and Material Science, Hebei University. Baoding, China.
Mitochondrial cristae, formed by folding the mitochondrial inner membrane (IM), are essential for cellular energy supply. However, the observation of the IM is challenging due to the limitations in spatiotemporal resolution offered by conventional microscopy and the absence of suitable in vitro probes specifically targeting the IM. Here, we describe a detailed imaging protocol for the mitochondrial inner membrane using the Si-rhodamine dye HBmito Crimson, which has excellent photophysical properties, to label live cells for imaging via stimulated emission depletion (STED) microscopy.
View Article and Find Full Text PDFiScience
January 2025
Department of Metabolic Diseases, Wilhelmina Children's Hospital, University Medical Center Utrecht, Utrecht 3584 EA, the Netherlands.
Traditional classification by clinical phenotype or oxidative phosphorylation (OXPHOS) complex deficiencies often fails to clarify complex genotype-phenotype correlations in mitochondrial disease. A multimodal functional assessment may better reveal underlying disease patterns. Using imaging flow cytometry (IFC), we evaluated mitochondrial fragmentation, swelling, membrane potential, reactive oxygen species (ROS) production, and mitochondrial mass in fibroblasts from 31 mitochondrial disease patients.
View Article and Find Full Text PDFAtherosclerosis, a slowly progressing inflammatory disease, is characterized by the presence of monocyte-derived macrophages. Interventions targeting the inflammatory characteristics of atherosclerosis hold promising potential. Although interleukin (IL)-10 is widely acknowledged for its anti-inflammatory effects, systemic administration of IL-10 has limitations due to its short half-life and significant systemic side effects.
View Article and Find Full Text PDFPathogenic variants of GDAP1 cause Charcot-Marie-Tooth disease (CMT), an inherited neuropathy characterized by axonal degeneration. GDAP1, an atypical glutathione S-transferase, localizes to the outer mitochondrial membrane (OMM), regulating this organelle's dynamics, transport, and membrane contact sites (MCSs). It has been proposed that GDAP1 functions as a cellular redox sensor.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!