Photosystem 2 and the oxygen evolving complex: a brief overview.

Photosynth Res

Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, MI, 48109, USA.

Published: May 2022

These special issues of photosynthesis research present papers documenting progress in revealing the many aspects of photosystem 2, a unique, one-of-a-kind complex system that can reduce a plastoquinone to a plastoquinol on every second flash of light and oxidize 2 HO to an O on every fourth flash. This overview is a brief personal assessment of the progress observed by the author over a four-decade research career, including a discussion of some remaining unsolved issues. It will come as no surprise to readers that there are remaining questions given the complexity of PS2, and the efforts that have been needed so far to uncover its secrets. In fact, most readers will have their own lists of outstanding questions.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s11120-022-00910-1DOI Listing

Publication Analysis

Top Keywords

photosystem oxygen
4
oxygen evolving
4
evolving complex
4
complex overview
4
overview special
4
special issues
4
issues photosynthesis
4
photosynthesis papers
4
papers documenting
4
documenting progress
4

Similar Publications

Key Chlorophyll Molecules in the Uphill Energy Transfer from Chlorophyll to P700 in Far-Red Light-Adapted Photosystem I.

J Phys Chem B

January 2025

Department of Physics, Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8602, Japan.

Multiple far-red light-adapted photosystem I (FR-PSI) reaction centers are recently found to work in oxygenic photosynthesis. They contain a small amount of a new type pigment chlorophyll (Chl ) in addition to the major pigment chlorophyll (Chl ). FR-PSI differs from the conventional PSIs in plants and cyanobacteria, which use only visible light absorbed by Chl , although the mechanism of FR-PSI is not fully clear yet.

View Article and Find Full Text PDF

The natural herbicide rhein targets photosystem I.

Sci Rep

December 2024

Department of Agricultural Biology, Colorado State University, Fort Collins, CO, USA.

The natural anthraquinone rhein has been identified as a novel herbicide with a potentially new mode of action using a generative AI system for functional molecules discovery. Its herbicidal activity was light-dependent and resulted in rapid burndown symptoms on leaves of treated plants. Rhein interferes with photosynthesis by acting as an electron diverter at the level of photosystem I (PSI).

View Article and Find Full Text PDF

Desiccation tolerance is a complex phenomenon observed in the lichen Flavoparmelia ceparata. To understand the reactivation process of desiccated thalli, completely dried samples were rehydrated. The rehydration process of this lichen occurs in two phases.

View Article and Find Full Text PDF

Diverse Transient Chiral Dynamics in Evolutionary Distinct Photosynthetic Reaction Centers.

J Chem Theory Comput

December 2024

Department of Physics, School of Physical Science and Technology, Ningbo University, Ningbo 315211, P.R. China.

The evolution of photosynthetic reaction centers (RCs) from anoxygenic bacteria to higher-order oxygenic cynobacteria and plants highlights a remarkable journey of structural and functional diversification as an adaptation to environmental conditions. The role of chirality in these centers is important, influencing the arrangement and function of key molecules involved in photosynthesis. Investigating the role of chirality may provide a deeper understanding of photosynthesis and the evolutionary history of life on Earth.

View Article and Find Full Text PDF

Photosynthetic water oxidation is a vital process responsible for producing dioxygen and supplying the energy necessary to sustain life on Earth. This fundamental reaction is catalyzed by the oxygen-evolving complex (OEC) of photosystem II, which houses the MnCaO cluster as its catalytic core. In this study, we specifically focus on the D1-Glu189 amino acid residue, which serves as a direct ligand to the MnCaO cluster.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!