Background: Leukemia inhibitory factor (LIF) is a multifunctional cytokine which plays multiple roles in different biological processes such as implantation, bone remodeling, and hematopoiesis. The buESCs are difficult to culture due to lack of proper understanding of the culture conditions. LIF is one of the important factors which maintain the pluripotency in embryonic stem cells and commercial LIF from murine and human origin is used in the establishment of buffalo embryonic stem cells (buESCs). The LIF from a foreign origin is not able to maintain pluripotency and proliferation in buESCs for a long term which is contributed by difference in the binding sites on LIF; therefore, culture medium supplemented with buffalo-specific LIF may enhance the efficiency of buESCs by improving the environment of culture conditions. The high cost of LIF is another major drawback which restricts buESCs research, thus limits the scope of buffalo stem cell use. Various methods have been developed to produce human and murine LIF in prokaryotic system. However, Buffalo leukemia inhibitory factor (BuLIF) has not been yet produced in prokaryotic system. Here, we describe a simple strategy for the expression and purification of biologically active BuLIF in Escherichia coli (E. coli).

Results: The BuLIF cDNA from buffalo (Bubalus bubalis) was cloned into pET22b(+) and expressed in E. coli Lemo-21(DE3). The expression of BuLIF was directed into periplasmic space of E. coli which resulted in the formation of soluble recombinant protein. One step immobilized metal affinity chromatography (IMAC chromatography) was performed for purification of BuLIF with ≥ 95% of homogeneity. The recombinant protein was confirmed by western blot and identified by mass spectroscopy. The biological activity of recombinant BuLIF was determined on murine myeloid leukemic cells (M1 cells) by MTT proliferation assay. The addition of BuLIF increased the reduction of MTT by stimulated M1 cells in a dose-dependent manner. The BuLIF induced the formation of macrophage like structures from M1 cells where they engulfed fluorescent latex beads. The recombinant BuLIF successfully maintained pluripotency in buffalo embryonic stem cells (buESCs) and were positive for stem cells markers such as Oct-4, Sox-2, Nanog, and alkaline phosphatase activity.

Conclusions: The present study demonstrated a simple method for the production of bioactive BuLIF in E. coli through single step purification. BuLIF effectively maintained buffalo embryonic stem cells pluripotency. Thus, this purified BuLIF can be used in stem cell study, biomedical, and agricultural research.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8927517PMC
http://dx.doi.org/10.1186/s43141-022-00328-1DOI Listing

Publication Analysis

Top Keywords

stem cells
20
embryonic stem
16
bulif
13
leukemia inhibitory
12
inhibitory factor
12
buffalo embryonic
12
cells
9
biologically active
8
factor bulif
8
bulif escherichia
8

Similar Publications

Chronic complete spinal cord injury (SCI) is difficult to treat because of scar formation and cavitary lesions. While human iPS cell-derived neural stem/progenitor cell (hNS/PC) therapy shows promise, its efficacy is limited without the structural support needed to address cavitary lesions. Our study investigated a combined approach involving surgical scar resection, decellularized extracellular matrix (dECM) hydrogel as a scaffold, and hNS/PC transplantation.

View Article and Find Full Text PDF

Curcumin liposomes alleviate senescence of bone marrow mesenchymal stem cells by activating mitophagy.

Sci Rep

December 2024

Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, China.

The senescence of mesenchymal stem cells (MSCs) is closely related to aging and degenerative diseases. Curcumin exhibits antioxidant and anti-inflammatory effects and has been extensively used in anti-cancer and anti-aging applications. Studies have shown that curcumin can promote osteogenic differentiation, autophagy and proliferation of MSCs.

View Article and Find Full Text PDF

iPSC-derived human sensory neurons reveal a subset of TRPV1 antagonists as anti-pruritic compounds.

Sci Rep

December 2024

Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), 61 Biopolis Drive, Proteos, Singapore, 138673, Republic of Singapore.

Signaling interplay between the histamine 1 receptor (H1R) and transient receptor potential cation channel subfamily V member 1 (TRPV1) in mediating histaminergic itch has been well-established in mammalian models, but whether this is conserved in humans remains to be confirmed due to the difficulties in obtaining human sensory neurons (SNs) for experimentation. Additionally, previously reported species-specific differences in TRPV1 function indicate that use of human SNs is vital for drug candidate screening to have a higher chance of identifying clinically effective TRPV1 antagonists. In this study, we built a histamine-dependent itch model using peripheral SNs derived from human induced pluripotent stem cells (hiPSC-SNs), which provides an accessible source of human SNs for pre-clinical drug screening.

View Article and Find Full Text PDF

Treatment of complex craniofacial deformities is still a challenge for medicine and dentistry because few approach therapies are available on the market that allow rehabilitation using 3D-printed medical devices. Thus, this study aims to create a scaffold with a morphology that simulates bone tissue, able to create a favorable environment for the development and differentiation of osteogenic cells. Moreover, its association with Plenum Guide, through cell-based tissue engineering (ASCs) for guided bone regeneration in critical rat calvarial defects.

View Article and Find Full Text PDF

Lung cancer ranks as the most prevalent malignant neoplasm worldwide, contributing significantly to cancer-related mortality. Stemness is a well-recognized factor underlying radiotherapy resistance, recurrence and metastasis in non-small-cell lung cancer (NSCLC) patients. Our prior investigations have established the role of IQ motif containing GTPase-activating protein 3 (IQGAP3) in mediating radiotherapy resistance in lung cancer, but its impact on lung cancer stemness remains unexplored.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!