Importance: Increased wait times and long lengths of stay in emergency departments (EDs) are associated with poor patient outcomes. Systems to improve ED efficiency would be useful. Specifically, minimizing the time to diagnosis by developing novel workflows that expedite test ordering can help accelerate clinical decision-making.

Objective: To explore the use of machine learning-based medical directives (MLMDs) to automate diagnostic testing at triage for patients with common pediatric ED diagnoses.

Design, Setting, And Participants: Machine learning models trained on retrospective electronic health record data were evaluated in a decision analytical model study conducted at the ED of the Hospital for Sick Children Toronto, Canada. Data were collected on all patients aged 0 to 18 years presenting to the ED from July 1, 2018, to June 30, 2019 (77 219 total patient visits).

Exposure: Machine learning models were trained to predict the need for urinary dipstick testing, electrocardiogram, abdominal ultrasonography, testicular ultrasonography, bilirubin level testing, and forearm radiographs.

Main Outcomes And Measures: Models were evaluated using area under the receiver operator curve, true-positive rate, false-positive rate, and positive predictive values. Model decision thresholds were determined to limit the total number of false-positive results and achieve high positive predictive values. The time difference between patient triage completion and test ordering was assessed for each use of MLMD. Error rates were analyzed to assess model bias. In addition, model explainability was determined using Shapley Additive Explanations values.

Results: There was a total of 42 238 boys (54.7%) included in model development; mean (SD) age of the children was 5.4 (4.8) years. Models obtained high area under the receiver operator curve (0.89-0.99) and positive predictive values (0.77-0.94) across each of the use cases. The proposed implementation of MLMDs would streamline care for 22.3% of all patient visits and make test results available earlier by 165 minutes (weighted mean) per affected patient. Model explainability for each MLMD demonstrated clinically relevant features having the most influence on model predictions. Models also performed with minimal to no sex bias.

Conclusions And Relevance: The findings of this study suggest the potential for clinical automation using MLMDs. When integrated into clinical workflows, MLMDs may have the potential to autonomously order common ED tests early in a patient's visit with explainability provided to patients and clinicians.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8928004PMC
http://dx.doi.org/10.1001/jamanetworkopen.2022.2599DOI Listing

Publication Analysis

Top Keywords

positive predictive
12
predictive values
12
machine learning-based
8
learning-based medical
8
medical directives
8
test ordering
8
machine learning
8
learning models
8
models trained
8
area receiver
8

Similar Publications

The present study examined the effects of cultural factors(ethnic identity, acculturation, perceived discrimination, and religiosity), derived from the Multicultural Assessment-Intervention Process (MAIP) model, on attitudes toward prescription drug use among Iranian/Persian Americans across the United States. The study consisted of a final sample of 454 Iranian/Persian American adult participants. The results indicated that Iranian/Persian American attitudes toward prescription drug use are impacted by demographic and cultural factors.

View Article and Find Full Text PDF

Use of the Adaptive Behaviour Dementia Questionnaire in a Down Syndrome Specialty Clinic.

J Integr Neurosci

January 2025

Down Syndrome Program, Division of Medical Genetics and Metabolism, Department of Pediatrics, Massachusetts General Hospital, Boston, MA 02114, USA.

Objective: To study the use of a dementia screening tool in our clinic cohort of adults with Down syndrome.

Study Design: A retrospective chart review of patients with Down syndrome was conducted to follow the use of the Adaptive Behaviour Dementia Questionnaire (ABDQ) in a dementia screening protocol. The ABDQ results for patients aged 40 years and older at a Down syndrome specialty clinic program were assessed.

View Article and Find Full Text PDF

Background: Previous research has highlighted the multifactorial nature of awake bruxism (AB), including its associations with stress, anxiety and other psychological factors. Dispositional mindfulness, known for its benefits in enhancing emotional regulation and reducing stress, has not yet been thoroughly investigated in association with AB.

Objective: This study aimed to investigate whether levels of dispositional mindfulness predict the efficacy of ecological momentary intervention (EMI) in reducing the frequency of AB behaviours.

View Article and Find Full Text PDF

This study investigates the relationship between SARS-CoV-2 RT-PCR cycle threshold (Ct) values and key COVID-19 transmission and outcome metrics across five years of the pandemic in Jalisco, Mexico. Utilizing a comprehensive time-series analysis, we evaluated weekly median Ct values as proxies for viral load and their temporal associations with positivity rates, reproduction numbers (Rt), hospitalizations, and mortality. Cross-correlation and lagged regression analyses revealed significant lead-lag relationships, with declining Ct values consistently preceding surges in positivity rates and hospitalizations, particularly during the early phases of the pandemic.

View Article and Find Full Text PDF

Despite extensive experience with influenza surveillance in humans in Senegal, there is limited knowledge about the actual situation and genetic diversity of avian influenza viruses (AIVs) circulating in the country, hindering control measures and pandemic risk assessment. Therefore, as part of the "One Health" approach to influenza surveillance, we conducted active AIV surveillance in two live bird markets (LBMs) in Dakar to better understand the dynamics and diversity of influenza viruses in Senegal, obtain genetic profiles of circulating AIVs, and assess the risk of emergence of novel strains and their transmission to humans. Cloacal swabs from poultry and environmental samples collected weekly from the two LBMs were screened by RT-qPCR for H5, H7, and H9 AIVs.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!