Filariasis, caused by a family of parasitic nematodes, affects millions of individuals throughout the tropics and is a major cause of acute and chronic morbidity. Current drugs are largely used in mass drug administration programs aimed at controlling the spread of disease by killing microfilariae, larval forms of the parasite responsible for transmission from humans to humans through insect vectors with limited efficacy against adult parasites. Although these drugs are effective, in some cases there are toxic liabilities. In case of loiasis which is caused by the parasitic eyeworm Loa loa, mass drug administration is contraindicative due to severe side effects of microfilariae killing, which can be life threatening. Our screening program and medicinal chemistry efforts have led to the identification of a novel series of compounds with potent killing activity against adult filarial parasites and minimal activity against microfilariae. A structural comparison search of our compounds demonstrated a close structural similarity to a recently described histone demethylase inhibitor, GSKJ1/4 which also exhibits selective adult parasite killing. We demonstrated a modification of histone methylation in Brugia malayi parasites treated with our compounds which might indicate that the mode of drug action is at the level of histone methylation. Our results indicate that targeting B. malayi and other filarial parasite demethylases may offer a novel approach for the development of a new class of macrofilaricidal therapeutics.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8926182PMC
http://dx.doi.org/10.1371/journal.pntd.0010216DOI Listing

Publication Analysis

Top Keywords

novel series
8
brugia malayi
8
histone demethylase
8
mass drug
8
drug administration
8
histone methylation
8
series putative
4
putative brugia
4
histone
4
malayi histone
4

Similar Publications

Expanding the clinical spectrum of 19p13.3 microduplication syndrome: a case report highlighting nephrotic syndrome and literature review.

BMC Pediatr

January 2025

Pediatric Internal Medicine, Yantai Yuhuangding Hospital, No.20 Yuhuangding East Road, Zhifu District, Yantai City, Shandong, 264000, China.

Background: Common clinical findings in patients with 19p13.3 duplication include intrauterine growth restriction, intellectual disability, developmental delay, microcephaly, and distinctive facial features. In this study, we report the case of a patient with 19p13.

View Article and Find Full Text PDF

We serendipitously discovered a novel series of azoheteroarene dyes capable of detecting pH variations in near-neutral solutions. These dyes feature thiazole, thiadiazole, triazole, pyrazole, or benzothiazole heteroaryls linked to hydroxyphenyl azo groups. They exhibit distinctive light absorption properties in aqueous solutions and show notable color changes in a narrow pH range, visible to the naked eye.

View Article and Find Full Text PDF

The cyclic GMP-AMP synthase (cGAS)-stimulator of the interferon genes (STING) pathway plays a key role in triggering interferon and inflammatory responses against microbial invasion or tumor. However, aberrant activation of the cGAS-STING pathway is associated with a variety of inflammatory and autoimmune diseases, and thus inhibition of STING is regarded as a potential new approach to treating these diseases. Herein, we report a series of novel indolyl-urea derivatives as STING inhibitors.

View Article and Find Full Text PDF

Nearly one billion individuals worldwide suffer from obstructive sleep apnea (OSA) and are potentially impacted by related neurodegeneration. TFEB is considered a master regulator of autophagy and lysosomal biogenesis, but little is known about its role in neuronal oxidative stress and resultant injury induced by OSA. This study aimed to investigate these issues.

View Article and Find Full Text PDF

Lung-targeted delivery of PTEN mRNA combined with anti-PD-1-mediated immunotherapy for In Situ lung cancer treatment.

Acta Biomater

January 2025

College of Chemistry, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, PR China. Electronic address:

mRNA-based protein replacement therapy has become one of the most widely applied forms of mRNA therapy, with lipid nanoparticles (LNPs) being extensively studied as efficient delivery platforms for mRNA. However, existing LNPs tend to accumulate in the liver or kidneys after intravenous injection, highlighting the need to develop vectors capable of targeting specific organs. In this study, we synthesized a small library of ionizable lipids and identified PPz-2R as a promising candidate, exhibiting lung-targeting capabilities, high mRNA transfection efficiency, and good stability through structure-activity relationship studies.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!