Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
The metabolic rate of walking can be reduced by applying a constant forward force at the center of mass. It has been shown that the metabolically optimal constant force magnitude minimizes propulsion ground reaction force at the expense of increased braking. This led to the hypothesis that selectively assisting propulsion could lead to greater benefits. We used a robotic waist tether to evaluate the effects of forward forces with different timings and magnitudes. Here, we show that it is possible to reduce the metabolic rate of healthy participants by 48% with a greater efficiency ratio of metabolic cost reduction per unit of net aiding work compared with other assistive robots. This result was obtained using a sinusoidal force profile with peak timing during the middle of the double support. The same timing could also reduce the metabolic rate in patients with peripheral artery disease. A model explains that the optimal force profile accelerates the center of mass into the inverted pendulum movement during single support. Contrary to the hypothesis, the optimal force timing did not entirely coincide with propulsion. Within the field of wearable robotics, there is a trend to use devices to mimic biological torque or force profiles. Such bioinspired actuation can have relevant benefits; however, our results demonstrate that this is not necessarily optimal for reducing metabolic rate.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9367670 | PMC |
http://dx.doi.org/10.1126/scirobotics.abh1925 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!