Rapidly identifying methicillin-resistant Staphylococcus aureus (MRSA) with high integration in the current workflow is critical in clinical practices. We proposed a matrix-assisted laser desorption/ionization-time-of-flight mass spectrometry (MALDI-TOF MS)-based machine learning model for rapid MRSA prediction. The model was evaluated on a prospective test and four external clinical sites. For the data set comprising 20,359 clinical isolates, the area under the receiver operating curve of the classification model was 0.78 to 0.88. These results were further interpreted using shapely additive explanations and presented using the pseudogel method. The important MRSA feature, 6,590 to 6,599, was identified as a UPF0337 protein SACOL1680 with a lower binding affinity or no docking results compared with UPF0337 protein SA1452, which is mainly detected in methicillin-susceptible S. aureus. Our MALDI-TOF MS-based machine learning model for rapid MRSA identification can be easily integrated into the current clinical workflows and can further support physicians in prescribing proper antibiotic treatments. Over 20,000 clinical MSSA and MRSA isolates were collected to build a machine learning (ML) model to identify MSSA/MRSA and their markers. This model was tested across four external clinical sites to ensure the model's usability. We report the first discovery and validation of MRSA markers on the largest scale of clinical MSSA and MRSA isolates collected to date, covering five different clinical sites. Our developed approach for the rapid identification of MSSA and MRSA can be highly integrated into the current workflows.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9045122PMC
http://dx.doi.org/10.1128/spectrum.00483-22DOI Listing

Publication Analysis

Top Keywords

machine learning
16
learning model
12
clinical sites
12
mssa mrsa
12
clinical
9
rapid identification
8
methicillin-resistant staphylococcus
8
staphylococcus aureus
8
aureus maldi-tof
8
20000 clinical
8

Similar Publications

T-helper 17 (Th17) cells significantly influence the onset and advancement of malignancies. This study endeavor focused on delineating molecular classifications and developing a prognostic signature grounded in Th17 cell differentiation-related genes (TCDRGs) using machine learning algorithms in head and neck squamous cell carcinoma (HNSCC). A consensus clustering approach was applied to The Cancer Genome Atlas-HNSCC cohort based on TCDRGs, followed by an examination of differential gene expression using the limma package.

View Article and Find Full Text PDF

Ultrasensitive Detection of Circulating Plasma Cells Using Surface-Enhanced Raman Spectroscopy and Machine Learning for Multiple Myeloma Monitoring.

Anal Chem

January 2025

Key Laboratory of OptoElectronic Science and Technology for Medicine of Ministry of Education, Fujian Provincial Key Laboratory of Photonics Technology, Fujian Normal University, Fuzhou, Fujian 350117, China.

Multiple myeloma is a hematologic malignancy characterized by the proliferation of abnormal plasma cells in the bone marrow. Despite therapeutic advancements, there remains a critical need for reliable, noninvasive methods to monitor multiple myeloma. Circulating plasma cells (CPCs) in peripheral blood are robust and independent prognostic markers, but their detection is challenging due to their low abundance.

View Article and Find Full Text PDF

Background: Sepsis, a critical global health challenge, accounted for approximately 20% of worldwide deaths in 2017. Although the Sequential Organ Failure Assessment (SOFA) score standardizes the diagnosis of organ dysfunction, early sepsis detection remains challenging due to its insidious symptoms. Current diagnostic methods, including clinical assessments and laboratory tests, frequently lack the speed and specificity needed for timely intervention, particularly in vulnerable populations such as older adults, intensive care unit (ICU) patients, and those with compromised immune systems.

View Article and Find Full Text PDF

Purpose: Adaptive radiotherapy accounts for interfractional anatomic changes. We hypothesize that changes in the gross tumor volumes identified during daily scans could be analyzed using delta-radiomics to predict disease progression events. We evaluated whether an auxiliary data set could improve prediction performance.

View Article and Find Full Text PDF

Purpose: Establishing an accurate prognosis remains challenging in older patients with cancer because of the population's heterogeneity and the current predictive models' reduced ability to capture the complex interactions between oncologic and geriatric predictors. We aim to develop and externally validate a new predictive score (the Geriatric Cancer Scoring System [GCSS]) to refine individualized prognosis for older patients with cancer during the first year after a geriatric assessment (GA).

Materials And Methods: Data were collected from two French prospective multicenter cohorts of patients with cancer 70 years and older, referred for GA: ELCAPA (training set January 2007-March 2016) and ONCODAGE (validation set August 2008-March 2010).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!