A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Obesity and exercise training alter inflammatory pathway skeletal muscle small extracellular vesicle microRNAs. | LitMetric

New Findings: What is the central question of this study? Is 1 week of exercise training sufficient to reduce local and systemic inflammation? Do obesity and short-term concurrent aerobic and resistance exercise training alter skeletal muscle extracellular vesicle (EV) contents? What is the main finding and its importance? Obesity alters skeletal muscle small EV microRNAs targeting inflammatory and growth pathways. Exercise training alters skeletal muscle small EV microRNAs targeting inflammatory pathways, indicative of reduced inflammation. Our findings provide support for the hypotheses that EVs play a vital role in intercellular communication during health and disease and that EVs mediate many of the beneficial effects of exercise.

Abstract: Obesity is associated with chronic inflammation characterized by increased levels of inflammatory cytokines, whereas exercise training reduces inflammation. Small extracellular vesicles (EVs; 30-150 nm) participate in cell-to-cell communication in part through microRNA (miRNA) post-transcriptional regulation of mRNA. We examined whether obesity and concurrent aerobic and resistance exercise training alter skeletal muscle EV miRNA content and inflammatory signalling. Vastus lateralis biopsies were obtained from sedentary individuals with (OB) and without obesity (LN). Before and after 7 days of concurrent aerobic and resistance training, muscle-derived small EV miRNAs and whole-muscle mRNAs were measured. Pathway analysis revealed that obesity alters small EV miRNAs that target inflammatory (SERPINF1, death receptor and Gα ) and growth pathways (Wnt/β-catenin, PTEN, PI3K/AKT and IGF-1). In addition, exercise training alters small EV miRNAs in an anti-inflammatory manner, targeting the IL-10, IL-8, Toll-like receptor and nuclear factor-κB signalling pathways. In whole muscle, IL-8 mRNA was reduced by 50% and Jun mRNA by 25% after exercise training, consistent with the anti-inflammatory effects of exercise on skeletal muscle. Obesity and 7 days of concurrent exercise training differentially alter skeletal muscle-derived small EV miRNA contents targeting inflammatory and anabolic pathways.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9323446PMC
http://dx.doi.org/10.1113/EP090062DOI Listing

Publication Analysis

Top Keywords

exercise training
36
skeletal muscle
24
training alter
12
muscle small
12
concurrent aerobic
12
aerobic resistance
12
alter skeletal
12
targeting inflammatory
12
small mirnas
12
training
10

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!