Effect of Articular Surface Compression on Cartilage Extracellular Matrix Deformation.

J Biomech Eng

Orthopaedic Soft Tissue Research Program, Hospital for Special Surgery, New York, NY 10021.

Published: September 2022

Early stage osteoarthritis is characterized by disruption of the superficial zone (SZ) of articular cartilage, including collagen damage and proteoglycan loss, resulting in "mechanical softening" of the extracellular matrix (ECM). The role of the SZ in controlling fluid exudation and imbibition during loading and unloading, respectively, was studied using confined creep compression tests. Bovine osteochondral (OC) plugs were subjected to either a static (88 kPa) or cyclic (0-125 kPa at 1 Hz) compressive stress for five minutes, and the cartilage deformation and recovery were measured during tissue loading and unloading, respectively. During unloading, the articular surface of the cartilage was either loaded with a small 1% tare load (∼1 kPa) applied through a porous load platen (covered), or completely unloaded (uncovered). Then the SZ (∼10%) of the cartilage was removed and the creep tests were repeated. Randomized tests were performed on each OC specimen to assess variability within and between plugs. Static creep strain was always greater than cyclic creep strain except at the beginning of loading (10-20 cycles). Uncovering the articular surface after creep deformation resulted in faster thickness recovery compared to the covered recovery. Removal of the SZ resulted in increased static and cyclic creep strains, as well as an increase in the cyclic peak-to-peak strain envelope. Our results indicate that an intact SZ is essential for normal cartilage mechanical function during joint motion by controlling fluid exudation and imbibition, and concomitantly ECM deformation and recovery, when loaded and unloaded, respectively.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10782873PMC
http://dx.doi.org/10.1115/1.4054108DOI Listing

Publication Analysis

Top Keywords

articular surface
12
extracellular matrix
8
controlling fluid
8
fluid exudation
8
exudation imbibition
8
loading unloading
8
deformation recovery
8
creep strain
8
cyclic creep
8
cartilage
6

Similar Publications

Is Extensor Indicis Proprius Tendon Transfer an Innocent Surgical Procedure for the Restoration of Extensor Pollicis Longus Function?

Acta Chir Orthop Traumatol Cech

January 2025

University of Mersin, School of Medicine, Department of Orthopaedics and Traumatology, Division of Hand Surgery, Mersin, Turkey.

Purpose Of The Study: The aim of this study to evaluate the subjective and objective results of Extensor indicis proprius (EIP) to extensor pollicis longus (EPL) transfer with an emphasis on donor site morbidity.

Material And Methods: 17 patients (59% men, 41% women) who underwent EIP-EPL transfer were retrospectively analyzed. The mean age was 43 (9-64) years, and the mean follow-up was 72 (19-124) months.

View Article and Find Full Text PDF

[Outcomes of Retrograde Femoral Nail Osteosynthesis of Intraarticular Fractures of the Distal Femur].

Acta Chir Orthop Traumatol Cech

January 2025

Klinika ortopedie a traumatologie pohybového ústrojí Fakultní nemocnice Plzeň.

Purpose Of The Study: Intraarticular fractures of the distal femur rank among the most severe musculoskeletal injuries. Various treatment options, such as plate osteosynthesis or retrograde nailing, can be employed. This study aims to evaluate the clinical outcomes and complications of intraarticular distal femoral fractures treated with retrograde femoral nail, with particular emphasis on C3 fractures.

View Article and Find Full Text PDF

Manubriosternal Morphology of Anthropoid Primates.

Am J Biol Anthropol

January 2025

Department of Pathology and Anatomical Sciences, M263 Medical Sciences Building, University of Missouri, Columbia, Missouri, USA.

Objectives: The purpose of this paper is to examine the proportions of the manubrium and sternebrae across anthropoid primates to explore variation hypothesized to be related to thoracic shape and locomotor specialization, and to determine whether the sternoclavicular joint orientation in hominoids reflects hypothesized differences in shoulder joint positioning relative to the thorax.

Materials And Methods: Metric data and sternoclavicular joint orientation data were collected from calibrated photographs of manubria and sternebrae from a large sample (n = 244) of extant anthropoid primates, as well as a small sample of fossil taxa. Manubriosternal and rib cage metric data were also collected from CT scans of an additional 52 extant anthropoid torsos.

View Article and Find Full Text PDF

Objective: In-depth investigation of the diagnostic performance of dual-energy CT (DECT) virtual non-calcium (VNCa) technique for sacroiliac joint bone marrow edema (BME) in patients with ankylosing spondylitis(AS).

Methods: A total of 42 patients with AS)who underwent sacroiliac joint MRI and DECT scans on the same day at our Rheumatology and Immunology Department between August 2022 and June 2023 were selected. Using MRI as the reference standard, the presence of BME on the iliac and sacral surfaces was evaluated, resulting in the categorization of patients into BME-positive and BME-negative groups.

View Article and Find Full Text PDF

In situ swelling of low-friction, high load-bearing self-bending bilayer hydrogels inspired by articular cartilage.

Biomed Mater

January 2025

School of Advanced Manufacturing, Nanchang University - Qianhu Campus, Nanchang, Jiangxi, China, Nanchang, --- Select One ---, 330031, CHINA.

The articular cartilage is characterized by its gradient hierarchical structure, which exhibits excellent lubrication and robust load-bearing properties. However, its inherent difficulty in self-repair after damage presents numerous formidable challenges for cartilage repair. Inspired by the unique structure of articular cartilage, a biomimetic bilayer hydrogel composed of PAM (polyacrylamide) and PAM/SA (sodium alginate) is prepared using a two-step in-situ swelling method.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!