AI Article Synopsis

  • The study addresses the issue of t-noise in 2D Magnetic Resonance experiments caused by instabilities like temperature changes and electronic fluctuations.
  • A new post-processing method called Compressed Sensing Multiplicative (CoSeM) is introduced, which averages multiple masked signal representations from fully sampled data to reduce t-noise.
  • CoSeM demonstrated significant improvements, achieving 2-3 times higher signal-to-noise ratios (SNR) across various experiments without introducing biases or blurring, preserving the reliability of data interpretation.

Article Abstract

Both in spectroscopy and imaging, t-noise arising from instabilities such as temperature alterations, field-related frequency drifts, electronic and sample-spinning instabilities, or motions in in vivo experiments, affects many 2D Magnetic Resonance experiments. This work introduces a post-processing method that aims to attenuate t-noise, by suitably averaging multiple signals/representations that have been reconstructed from the sampled data. The ensuing Compressed Sensing Multiplicative (CoSeM) denoising starts from a fully sampled 2D MR data set, discards random indirect-domain points, and makes up for these missing, masked data, by a compressed sensing reconstruction of the now incompletely sampled 2D data set. This procedure is repeated for multiple renditions of the masked data -some of which will have been more strongly affected by t-noise than others. This leads to a large set of 2D NMR spectra/images compatible with the collected data; CoSeM chooses out of these those renditions that reduce the noise according to a suitable criterion, and then sums up their spectra/images leading to a reduction in t-noise. The performance of the method was assessed in synthetic data, as well as in numerous different experiments: 2D solid and solution state NMR, 2D localized MRS of live brains, and 2D abdominal MRI. Throughout all these data, CoSeM processing evidenced 2-3 fold increases in SNR, without introducing biases, false peaks, or spectral/image blurring. CoSeM also retains a quantitative linearity in the information -allowing, for instance, reliable T inversion-recovery MRI mapping experiments.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jmr.2022.107187DOI Listing

Publication Analysis

Top Keywords

compressed sensing
12
sampled data
12
magnetic resonance
8
spectroscopy imaging
8
data
8
data set
8
masked data
8
data cosem
8
denoising method
4
method multidimensional
4

Similar Publications

Previous research has demonstrated that postural stability may be improved by increasing stimulation to the somatosensory system. Wearing lower limb compression garments or textured in-soles have been found to be effective short-term methods for improving postural stability, hypothesized to be due to enhanced tactile feedback. The aim of this study was to assess whether a combined compression-tactile sock increases postural stability in healthy adults, compared to barefoot.

View Article and Find Full Text PDF

Cine-magnetic resonance imaging (MRI) has been used to track respiratory-induced motion of the liver and tumor and assist in the accurate delineation of tumor volume. Recent developments in compressed sensitivity encoding (SENSE; CS) have accelerated temporal resolution while maintaining contrast resolution. This study aimed to develop and assess hepatobiliary phase (HBP) cine-MRI scans using CS.

View Article and Find Full Text PDF

Comparing CT-like bone images based on FRACTURE MR with CT in pediatric congenital vertebral anomalies.

AJNR Am J Neuroradiol

December 2024

From the Department of Radiology (H.N.M., F.B.G.), Bai Jerbai Wadia Hospital for Children, Mumbai, Maharashtra, India.

Background And Purpose: Congenital vertebral anomalies are commonly associated with underlying spinal cord anomaly which necessitates imaging both the spinal cord and the bony vertebral column to understand the extent of the deformity better. While MRI is the gold standard for spinal cord imaging, it does not provide CT-like bone details. Many MR bone imaging techniques have been tested in various adult spine conditions in the past decade but not much has been described on their reliability in pediatric spine.

View Article and Find Full Text PDF

Unlabelled: The article is devoted to the problem of the rehabilitation stage of cochlear implantation in patients with inner ear abnormalities. It provides a detailed analysis of the audiological characteristics of such patients and draws conclusions about approaches to interpreting diagnostic data and speech processors fitting.

Material And Methods: The track records of 80 patients with abnormalities of the inner ear development were retrospectively studied, of which 10 had abnormal structure of the auditory nerve.

View Article and Find Full Text PDF

Objectives: Phosphorus-31 magnetic resonance spectroscopic imaging (P-MRSI) is a non-invasive tool for assessing cellular high-energy metabolism in-vivo. However, its acquisition suffers from a low sensitivity, which necessitates large voxel sizes or multiple averages to achieve an acceptable signal-to-noise ratio (SNR), resulting in long scan times.

Materials And Methods: To overcome these limitations, we propose an acquisition and reconstruction scheme for FID-MRSI sequences.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!