The present study on one non-edible oilseed (Mesua ferrea L) employs the pyrolysis process to understand the pyrolysate composition and the thermal degradation behavior of biomass. The physicochemical characterization of whole seed was investigated using thermogravimetric analysis at different heating rates (5, 10, 20, and 40 °C min), bomb calorimeter, proximate/ultimate analysis. FTIR analysis confirmed the presence of the lignocellulosic compounds. Kinetic analysis of biomass was investigated using iso-conversional models such as Friedman, Kissinger-Akhaira-Sunose, Ozawa-Flynn-Wall, Starink, Distributed Activation Energy model, and Avrami model. Further, composition analysis of the pyrolytic vapor was analyzed using analytical fast pyrolysis coupled with gas chromatogram/mass spectrometer (Py-GC/MS) at 400, 500, 600 °C. This study confirmed that alkenes were major pyrolysates, followed by alkanes and esters. The current investigation suggested that Mesua ferrea L whole seed can be converted to valuable chemicals using pyrolysis.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.biortech.2022.126987 | DOI Listing |
Chem Biodivers
January 2025
Kunming Institute of Botany Chinese Academy of Sciences, Key laboratory of economic plants and biotechnology, 132# Lanhei Road, Heilongtan, Kunming, Yunnan, China, 650201, Kunming, CHINA.
Mesua ferrea L. is used in Ayurvedic and Thai medicine for treating various diseases, including diabetes. This study aimed to isolate and identify the bioactive constituents from M.
View Article and Find Full Text PDFTissue Cell
January 2025
College of Pharmacy, Shenzhen Technology University, Shenzhen 518118, China. Electronic address:
Mesua ferrea L. was commonly used in Uyghur medicine, and the flowering buds of M. ferrea extract exhibited significant inhibitory effects on the proliferation of breast cancer cells in our preliminary research; however, the underlying active components remain to be elucidated.
View Article and Find Full Text PDFACS Omega
January 2025
Department of Chemical Engineering, Indian Institute of Technology Guwahati, Guwahati 781039, India.
The current investigation focuses on the copyrolysis of L. (a nonedible oilseed, also known as Nahar) and polyethyelene terephthalate (PET) plastic waste to gain insights into the composition of pyrolysates and the thermal decomposition of complex and mixed feedstocks. The physicochemical properties of the feedstocks were studied through thermogravimetric analysis at a heating rate of 15 °C min, bomb calorimetry, and proximate/ultimate analysis.
View Article and Find Full Text PDFInt J Biol Macromol
January 2025
Chemical Engineering Group and Centre for Petroleum Research, CSIR-North East Institute of Science and Technology, Jorhat 785006, Assam, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India. Electronic address:
PLoS One
December 2024
School of Allied Health Sciences, Walailak University, Nakhon Si Thammarat, Thailand.
The increased resistance of Plasmodium falciparum to artemisinin and its partner drugs poses a serious challenge to global malaria control and elimination programs. This study aimed to investigate the therapeutic potential of Mesua ferrea Linn., a medicinal plant, as a source for novel antimalarial compounds.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!