Green tea and its natural components are known for their usefulness against a variety of diseases. In particular, the activity of main catechin Epigallocatechin gallate (EGCG) against Dual-specificity tyrosine-(Y)-phosphorylation Regulated Kinase-1A (DYRK1A) has been reported; here we are showing a structure-activity relationship (SAR) for EGCG against this molecular target. We have studied the influence of all four rings on the activity and the nature of its absolute geometry. This work has led to the identification of the more potent and stable trans fluoro-catechin derivative 1f (IC = 35 nM). This molecule together with a novel delivery method showed good efficacy in vivo when tested in a validated model of multiple sclerosis (EAE).

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9067539PMC
http://dx.doi.org/10.1016/j.bmcl.2022.128675DOI Listing

Publication Analysis

Top Keywords

multiple sclerosis
8
design synthesis
4
synthesis biological
4
biological evaluation
4
evaluation polyphenol
4
polyphenol derivatives
4
derivatives dyrk1a
4
dyrk1a inhibitors
4
inhibitors discovery
4
discovery promising
4

Similar Publications

Magnetic resonance imaging (MRI) is frequently used to monitor disease progression in multiple sclerosis (MS). This study aims to systematically evaluate the correlation between MRI measures and histopathological changes, including demyelination, axonal loss, and gliosis, in the central nervous system of MS patients. We systematically reviewed post-mortem histological studies evaluating myelin density, axonal loss, and gliosis using quantitative imaging in MS.

View Article and Find Full Text PDF

Background: Multiple sclerosis (MS) is a chronic autoimmune condition that damages the myelin sheath of neurons in the central nervous system, resulting in compromised nerve transmission and motor impairment. The astrocytopathy is considered one of the prominent etiological factor in the pathophysiology of demyelination in MS. The expression level of ceramide synthase-2 (CS-2) is yet to be established in the pathophysiology of astrocytopathy although the derailed ceramide biosynthetic pathways is well demonstrated in the pathophysiology of demyelination.

View Article and Find Full Text PDF

Protein aggregates in motoneurons, a pathological hallmark of amyotrophic lateral sclerosis, have been suggested to play a key pathogenetic role. ALS8, characterized by ER-associated inclusions, is caused by a heterozygous mutation in VAPB, which acts at multiple membrane contact sites between the ER and almost all other organelles. The link between protein aggregation and cellular dysfunction is unclear.

View Article and Find Full Text PDF

The anti-inflammatory role of miR-23b-3p (miR-23b) is known in autoimmune diseases like multiple sclerosis, systemic lupus erythematosus, and rheumatoid arthritis. However, its role in sepsis-related acute lung injury (ALI) and its effect on macrophages in ALI remain unexplored. This investigation aimed to evaluate miR-23b's therapeutic potential in macrophages in the context of ALI.

View Article and Find Full Text PDF

An MRI assessment of mechanisms underlying lesion growth and shrinkage in multiple sclerosis.

Ann Clin Transl Neurol

January 2025

NMR Research Unit, Queen Square Multiple Sclerosis Centre, UCL Queen Square Institute of Neurology, University College London, London, UK.

Objective: To assess the pathological mechanisms contributing to white matter (WM) lesion expansion or contraction and remyelination in multiple sclerosis (MS).

Methods: We assessed 1,613 lesions in 49 people with relapsing-remitting MS in the CCMR-One bexarotene trial (EudraCT 2014-003145-99). We measured lesion orientation relative to WM tracts, surface-in gradients and veins.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!