Anthropogenic input of sulfate (SO) in reservoirs may enhance bacterial sulfate reduction (BSR) under seasonally hypoxic conditions in the water column. However, factors that control BSR and its coupling to organic carbon (OC) mineralization in seasonally hypoxic reservoirs remain unclear. The present study elucidates the coupling processes by analyzing the concentrations and isotopic composition of dissolved inorganic carbon (DIC) and sulfur (SO, sulfide) species, and the microbial community in water of the Aha reservoir, SW China, which has high SO concentration due to the inputs from acid mine drainage about twenty years ago. The water column at two sites in July and October revealed significant thermal stratification. In the hypoxic bottom water, the δC-DIC decreased while the δS-SO increased, implying organic carbon mineralization due to BSR. The magnitude of S isotope fractionation (ΔS, obtained from δS-δS) during the process of BSR fell in the range of 3.4‰ to 27.0‰ in July and 21.6‰ to 31.8‰ in October, suggesting a change in the community of sulfate-reducing bacteria (SRB). The relatively low water column stability in October compared to that in July weakened the difference of water chemistry and ultimately affected the SRB diversity. The production of DIC (ΔDIC) scaled a strong positive relationship with the ΔS in July (p < 0.01), indicating that high OC availability favored the survival of incomplete oxidizers of SRB. However, in October, ΔC-DIC was correlated with the ΔS in the bottom hypoxic water (p < 0.01), implying that newly degraded OC depleted in C could favor the dominance of complete oxidizers of SRB which caused greater S isotope fractionation. Moreover, the sulfide supplied by BSR might stimulate the reductive dissolution of Fe and Mn oxides (Fe(O)OH and MnO). The present study helps to understand the coupling of C and S in seasonally hypoxic reservoirs characterized by high SO concentration.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.scitotenv.2022.154537 | DOI Listing |
Mar Pollut Bull
January 2025
Facultad de Pesquería, Universidad Nacional Agraria La Molina, Av. La Molina S/N, La Molina, Lima 15024, Peru.
Paracas Bay, located in the Humboldt Current system, is a highly variable coastal environment where hypoxia (dissolved oxygen concentrations <2 mg L) has been reported as a persistent feature of bottom conditions. In addition to hypoxia, milky water events have been reported in the bay, most likely associated with the presence of sulfides (i.e.
View Article and Find Full Text PDFMar Pollut Bull
January 2025
CSIR-National Institute of Oceanography, Dona Paula, Goa 403004, India.
Coastal deoxygenation impacts phytoplankton communities crucial for marine productivity. The inter- and intra-annual variability in phytoplankton communities at a shallow (27 m) station over the Western Indian Shelf (CaTS site, off Goa) during deoxygenation events of the late southwest monsoon (LSWM September-October) were studied from 2020 to 2023. The water column (0-27 m depth) experienced seasonal hypoxia/anoxia at subsurface depths (0-1.
View Article and Find Full Text PDFEnviron Sci Pollut Res Int
January 2025
National Centre for Earth Sciences Studies, Akkulam, Thiruvananthapuram, 695031, Kerala, India.
The submarine groundwater discharge (SGD) into the sea is known to alter various biotic and abiotic properties of coastal waters. However, its influence on the lower trophic levels, namely, meiofauna, is poorly understood. This study highlights the impact of SGD on the density, distribution, and diversity of intertidal meiofaunal communities along the subterranean estuaries (STEs) of the southwest coast of India (Arabian Sea).
View Article and Find Full Text PDFMov Ecol
January 2025
Great Lakes Laboratory for Fisheries and Aquatic Science, Fisheries and Oceans Canada, 867 Lakeshore Road, Burlington, ON, Canada.
Background: Globally, temperate lakes are experiencing increases in surface water temperatures, extended periods of summer stratification, and decreases of both surface and deep water dissolved oxygen (DO). The distribution of fish is influenced by a variety of factors, but water temperature and dissolved oxygen are known to be particularly constraining such that with climate change, fish will likely feel the "squeeze" from above and below.
Methods: This study used acoustic telemetry to explore the effects of both thermal stratification and the deoxygenation of the hypolimnion on walleye (Sander vitreus) movements in a coastal embayment in Lake Ontario.
Front Plant Sci
December 2024
Department of Horticulture and Crop Science, The Ohio State University, Columbus, OH, United States.
Field pennycress () is a new biofuel winter annual crop with extreme cold hardiness and a short life cycle, enabling off-season integration into corn and soybean rotations across the U.S. Midwest.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!