Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Aging and cardiovascular diseases (CVDs) may alter the microstructures of arteries and hence their mechanical properties. Therefore, the measurement of intrinsic artery mechanical properties in vivo can provide valuable information in understanding aging and CVDs and is of clinical significance. The accuracy of advanced ultrasound imaging techniques in measuring the deformation of large arteries under blood pressure is good. However, the assessment of arterial stiffness in vivo remains a challenge. An inverse method to infer the constitutive parameters of arteries in vivo from the blood pressure-arterial radius relationship (P-r curve) is proposed here. The stability analysis reveals that a key constitutive parameter, b, which measures the circumferential hardening of an artery, can be reliably identified. An in vivo experiment was performed on the common carotid arteries of 41 healthy volunteers (age: 37 ± 17 y). The value of b varies significantly (from 0.55 ± 0.15 for the young group to 0.93 ± 0.29 for the older group, p < 0.01) and is positively correlated with age (r = 0.673, p < 0.01). Furthermore, our theoretical analysis and experimental study have revealed a strong correlation between the clinic-used stiffness index β and b. This study shows that the arterial material parameter b can be measured in vivo, which makes it promising as a new biomarker in the diagnosis of CVDs.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.ultrasmedbio.2022.01.020 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!