Novel Method for Rapid Detection of COVID-19 Omicron Variant and Future Emerging Variants.

Discov Med

Department of Pathology, University of Maryland School of Medicine, 685 West Baltimore St., Baltimore, Maryland 20201, USA.

Published: March 2022

Over six million people have died worldwide as a result of SARS-CoV-19 (Covid-19). Several major and minor variant waves of Covid-19 including the Alpha (B.1.1.7), Delta (B.1.617.2), and the Omicron (B.1.1.529) have infected patients in the last two years. These individual variants have been associated with different infectivity and death rates, and it is anticipated that other variants of significance will occur. As a result, the emergence and frequency of the different Covid-19 variants at various locations in the world are critically important to monitor. To date, sequencing of these variants has been the primary method to track the prevalence of the different variants, but this approach is relatively slow and expensive. In contrast, we have developed two qPCR methods that are sensitive, specific, and economical which can distinguish the Omicron variant from the other variants. The first qPCR method detects a specific base mutation in Omicron enabling improved amplification. The second method is based on designing a primer specific for the region in which a deletion and an insertion have occurred in the Omicron variant. While the first approach can be readily adapted to identify other variants with point mutations, the second method can identify emerging deletion/insertion mutations such as BA.2, a subvariant of the Omicron.

Download full-text PDF

Source

Publication Analysis

Top Keywords

omicron variant
12
variants
8
second method
8
omicron
6
novel method
4
method rapid
4
rapid detection
4
covid-19
4
detection covid-19
4
covid-19 omicron
4

Similar Publications

A human antibody derived from original SARS-CoV-2 infection effectively neutralizes omicron.

Adv Biotechnol (Singap)

January 2024

Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, 320 Yueyang Road, Shanghai, 200030, China.

SARS-CoV-2 (Severe acute respiratory syndrome coronavirus 2) Variants of Concern (VOCs), such as the Omicron sub-variants, present significant challenges in pandemic control due to their capacity to escape antibodies and breach vaccine protections. Discovering antibodies that can tolerate mutations in VOCs and understanding their underlying mechanisms is crucial for developing therapeutics for COVID-19 patients, particularly those for whom other therapies may be unsuitable. Here, we report the neutralization of the Omicron variant by FD20, a broadly active human monoclonal antibody.

View Article and Find Full Text PDF

Early investigation revealed a reduced risk of SARS-CoV-2 infection among social contacts of COVID-19 vaccinated individuals, referred to as indirect protection. However, indirect protection from SARS-CoV-2 infection-acquired immunity and its comparative strength and durability to vaccine-derived indirect protection in the current epidemiologic context of high levels of vaccination, prior infection, and novel variants are not well characterized. Here, we show that both vaccine-derived and infection-acquired immunity independently yield indirect protection to close social contacts with key differences in their strength and waning.

View Article and Find Full Text PDF

Background: The emergence of novel SARS-CoV-2 variants challenges immunity, particularly among immunocompromised kidney transplant recipients (KTRs). To address this, vaccines have been adjusted to circulating variants. Despite intensive vaccination efforts, SARS-CoV-2 infections surged among KTRs during the Omicron wave, enabling a direct comparison of variant-specific immunity following-vaccination against Omicron BA.

View Article and Find Full Text PDF

Objectives: Safety and immunogenicity assessment of updated monovalent and bivalent SARS-CoV-2 vaccines in adolescents.

Methods: This phase 3, double-blinded study randomised 12-<18-year-old participants, who received ≥2 prior doses of an approved/authorised mRNA-based COVID-19 vaccine, 1:1 to receive NVX-CoV2601 (XBB.1.

View Article and Find Full Text PDF

Phenotypic Classification of Multisystem Inflammatory Syndrome in Children Using Latent Class Analysis.

JAMA Netw Open

January 2025

Coronavirus and Other Respiratory Viruses Division, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia.

Importance: Multisystem inflammatory syndrome in children (MIS-C) is an uncommon but severe hyperinflammatory illness that occurs 2 to 6 weeks after SARS-CoV-2 infection. Presentation overlaps with other conditions, and risk factors for severity differ by patient. Characterizing patterns of MIS-C presentation can guide efforts to reduce misclassification, categorize phenotypes, and identify patients at risk for severe outcomes.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!