Background: Renal fibrosis is a common outcome of various renal damage, including diabetic nephropathy (DN), the leading cause of end-stage renal disease. Currently, there are no effective therapies for renal fibrosis. The present study aimed to determine whether pentosan polysulphate sodium (PPS), a FDA approved medication for interstitial cystitis, protects diabetic renal fibrosis.
Methods: Cell viability and apoptosis were evaluated in mouse mesangial cells (SV40-MES13) after incubating with the advanced glycation end products (AGEs), which play important roles in the pathogenesis of DN. Western blot and ELISA were performed to determine the expression of transforming growth factor-beta1 (TGF-β1) and fibronectin (FN), two biomarkers of renal fibrosis, as well as interleukin-6 (IL-6) and tumor necrosis factor alpha (TNFα), two biomarkers of inflammation. The miRNA-mRNA regulatory network involved in the phosphatidylinositol 3-kinase (PI3K)/Ser and Thr Kinase (AKT) signalling was investigated by miRNA deep sequencing and validated by RT-PCR and miRNA transfection.
Results: AGEs significantly inhibited cell proliferation and promoted cell apoptosis, which was associated with the overexpression of TGF-β1, FN, IL-6, and TNFα. PPS almost completely reversed AGEs-induced biomarkers of fibrosis and inflammation, and significantly altered the miRNA expression profile in AGEs-treated cells. Notably, the PI3K/AKT signalling was one of the most significantly enriched pathways targeted by PPS-related differentially expressed miRNAs. PPS significantly up-regulated miR-466a-3p, which was shown to target PIK3CA, and mediated the inhibitory effect of PPS on AGEs-induced activation of PI3K/AKT pathway.
Conclusions: The treatment of PPS protected against AGEs-induced toxicity in SV40 MES13 cells via miR-466a-3p-mediated inhibition of PI3K/AKT pathway.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8925175 | PMC |
http://dx.doi.org/10.1186/s12882-022-02732-8 | DOI Listing |
Nat Rev Nephrol
January 2025
Cellular and Molecular Biology in Renal and Vascular Pathology Laboratory, Instituto de Investigación Sanitaria-Fundación Jiménez Díaz, Universidad Autónoma de Madrid, Madrid, Spain.
J Cyst Fibros
January 2025
Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Lebanon, NH, USA; Department of Epidemiology, Geisel School of Medicine at Dartmouth, Lebanon, NH, USA. Electronic address:
Background: Adult people with cystic fibrosis (PwCF) have a higher risk of end-stage kidney disease than the general population. The nature and mechanism of kidney disease in CF are unknown. This study quantifies urinary kidney injury markers and examines the hypothesis that neutrophil activation and lung infection are associated with early kidney injury in CF.
View Article and Find Full Text PDFBiochim Biophys Acta Mol Basis Dis
January 2025
Department of Nephrology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China; Department of Medicine, Rhode Island Hospital and Alpert Medical School, Brown University, Providence, RI, USA. Electronic address:
Autosomal dominant polycystic kidney disease (ADPKD) is the fourth leading cause of end-stage renal disease, contributing substantially to patient morbidity, mortality, and healthcare system strain. Emerging research highlights a pivotal role of epigenetics in ADPKD's pathophysiology, where mechanisms like DNA methylation, histone modifications, and non-coding RNA regulation significantly impact disease onset and progression. These epigenetic factors influence gene expression and regulate key processes involved in cyst formation and expansion, fibrosis, and inflammatory infiltration, thus accelerating ADPKD progression.
View Article and Find Full Text PDFCardiol Rev
January 2025
From the First Department of Cardiology, School of Medicine, National and Kapodistrian University of Athens, Hippokration General Hospital, Athens, Greece.
Although metabolic dysfunction-associated steatotic liver disease (MASLD), previously termed nonalcoholic fatty liver disease, has become the most common chronic liver disorder, its complex pathophysiology has not been fully elucidated up to date. A correlation between elevated sympathetic activation and MASLD has been highlighted in recent preclinical and clinical studies. Furthermore, increased sympathetic activity has been associated with the main mechanisms involved in MASLD, such as lipid accumulation in the liver, insulin resistance, and metabolic dysregulation, while it has been also correlated with the progression of MASLD, leading to liver fibrosis.
View Article and Find Full Text PDFFront Vet Sci
December 2024
School of Veterinary Medicine, College of Bio-Resources and Agriculture, Institute of Veterinary Clinical Science, National Taiwan University, Taipei, Taiwan.
Introduction: Hypoxia-inducible factors (HIF) regulate gene transcription, which aids hypoxia adaptation while promoting renal fibrosis. Non-transferrin-bound iron (NTBI) is a catalytic form of iron that can lead to oxidative damage. However, NTBI in cat biofluids has rarely been evaluated.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!